An Optical Diffuse Reflectance Model for the Characterization of a Si Wafer with an Evaporated SiO2 Layer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Si Wafer with Evaporated SiO2 Layer
2.2. Diffuse Reflectance Model
2.3. Inversion of the Model
- The variables of the light-material model were initialized in random values.
- Then, with the current value of the model’s variables, a simulated diffuse reflectance spectrum () was calculated by means of Equation (3).
- After that, the Mean Square Error (MSE) between the simulated reflectance and the measured one was calculated by means of the following equation:
- Once the MSE was evaluated, it was evaluated whether this value converges to a minimum value. If so, the inverse-modeling procedure was ended successfully and the final result corresponds to the current values of the light-material model’s variables. If otherwise, the procedure continued to step 5.
- In this step, the Nelder–Mead simplex optimization approach calculated new values for the light-material model’s variables. Once these new values were obtained, the procedure returned back to step 2.
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pfeiffer, K.; Shestaeva, S.; Bingel, A.; Munzert, P.; Ghazaryan, L.; van Helvoirt, C.A.A.; Szeghalmi, A. Comparative study of ALD SiO2 thin films for optical applications. Opt. Mater. Express 2016, 6, 660–670. [Google Scholar] [CrossRef]
- Raut, H.K.; Nair, A.S.; Dinachali, S.S.; Ganesh, V.A.; Walsh, T.M. Seeram Ramakrishna Porous SiO2 anti-reflective coatings on large-area substrates by electrospinning and their application to solar modules. Sol. Energy Mater. Sol. Cells 2013, 111, 9–15. [Google Scholar] [CrossRef]
- Keshavarz Hedayati, M.; Abdelaziz, M.; Etrich, C.; Homaeigohar, S.; Rockstuhl, C.; Elbahri, M. Broadband Anti-Reflective Coating Based on Plasmonic Nanocomposite. Materials 2016, 9, 636. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, T.; Hansen, O.; Jensen, J.; Thomsen, E. Thermal Oxidation of Structured Silicon Dioxide. ECS J. Solid State Sci. Technol. 2014, 3, 63–68. [Google Scholar] [CrossRef]
- Amirzada, M.R.; Tatzel, A.; Viereck, V.; Hillmer, H. Surface roughness analysis of SiO2 for PECVD, PVD and IBD on different substrates. Appl. Nanosci. 2016, 6, 215–222. [Google Scholar] [CrossRef]
- Panek, P.; Drabczyk, K.; Focsa, A.; Slaoui, A. A comparative study of SiO2 deposited by PECVD and thermal method as passivation for multicrystalline silicon solar cells. Mater. Sci. Eng. B 2009, 165, 64–66. [Google Scholar] [CrossRef]
- Klaus, J.W.; Sneh, O.; George, S.M. Growth of SiO2 at Room Temperature with the Use of Catalyzed Sequential Half-Reactions. Science 1997, 278, 1934–1936. [Google Scholar] [CrossRef]
- Piegari, A.; Masetti, E. Thin film thickness measurement: A comparison of various techniques. Thin Solid Films 1985, 124, 249–257. [Google Scholar] [CrossRef]
- Roland, W.F.; Zeitlin, H. Diffuse Reflectance Spectroscopy. CRC Crit. Rev. Anal. Chem. 1971, 2, 179–246. [Google Scholar] [CrossRef]
- Pimenta, S.; Castanheira, E.; Minas, G. Optical microsystem for analysis of diffuse reflectance and fluorescence signals applied to early gastrointestinal cancer detection. Sensors 2015, 15, 3138–3153. [Google Scholar] [CrossRef] [PubMed]
- Chlebus, R.; Chylek, J.; Ciprian, D.; Hlubina, P. Surface Plasmon Resonance Based Measurement of the Dielectric Function of a Thin Metal Film. Sensors 2018, 18, 3693. [Google Scholar] [CrossRef] [PubMed]
- Thin Film Thickness Measurement Systems by Filmetrics. Available online: https://www.filmetrics.com/ (accessed on 27 November 2018).
- Zonios, G.; Dimou, A. Modeling diffuse reflectance from semi-infinite turbid media: Application to the study of skin optical properties. Opt. Express 2006, 14, 8661–8674. [Google Scholar] [CrossRef] [PubMed]
- Optical Properties of Silicon. Available online: https://www.pveducation.org/pvcdrom/materials/optical-properties-of-silicon (accessed on 27 October 2018).
- Dobrowolska, P.; Krajewska, A.; Gajda-Rączka, M.; Bartosewicz, B.; Nyga, P.; Jankiewicz, B.J. Application of Turkevich method for gold nanoparticles synthesis to fabrication of SiO2@Au and TiO2@Au core-sshell nanostructures. Materials 2015, 8, 2849–2862. [Google Scholar] [CrossRef]
- Mätzler, C. Matlab Functions for Mie Scattering and Absorption, version 2; IAP Research Report 8; Institut für Angewandte Physik: Bern, Switzerland, 2002. [Google Scholar]
- Sasaki, S.; An, H.; Mori, Y.; Kataoka, T.; Endo, K.; Inoue, H.; Mizuhara, S. Evaluation of particles on a Si wafer before and after cleaning using a new laser particle counter. In Proceedings of the ISSM2000, Ninth International Symposium on Semiconductor Manufacturing (IEEE Cat. No.00CH37130), Tokyo, Japan, 26–28 September 2000; pp. 317–320. [Google Scholar] [CrossRef]
- Nagel, J.R.; Scarpulla, M.A. Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles. Opt. Express 2010, 18, A139–A146. [Google Scholar] [CrossRef] [PubMed]
- Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef]
Thickness of SiO2 (nm) | PVF_SiO2 (%) | PD_SiO2 (nm) | aSiO2 (A.U.) | PVF_Si (A.U.) | PD_Si (nm) | aSi (A.U.) |
---|---|---|---|---|---|---|
930 | 0.20 | 104 | 0.34 | 1.24 | 1.01 | 1.14 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarzycki, A.; Galeano, J.; Bargiel, S.; Andrieux, A.; Gorecki, C. An Optical Diffuse Reflectance Model for the Characterization of a Si Wafer with an Evaporated SiO2 Layer. Sensors 2019, 19, 892. https://doi.org/10.3390/s19040892
Zarzycki A, Galeano J, Bargiel S, Andrieux A, Gorecki C. An Optical Diffuse Reflectance Model for the Characterization of a Si Wafer with an Evaporated SiO2 Layer. Sensors. 2019; 19(4):892. https://doi.org/10.3390/s19040892
Chicago/Turabian StyleZarzycki, Artur, July Galeano, Sylwester Bargiel, Aurore Andrieux, and Christophe Gorecki. 2019. "An Optical Diffuse Reflectance Model for the Characterization of a Si Wafer with an Evaporated SiO2 Layer" Sensors 19, no. 4: 892. https://doi.org/10.3390/s19040892
APA StyleZarzycki, A., Galeano, J., Bargiel, S., Andrieux, A., & Gorecki, C. (2019). An Optical Diffuse Reflectance Model for the Characterization of a Si Wafer with an Evaporated SiO2 Layer. Sensors, 19(4), 892. https://doi.org/10.3390/s19040892