Controlled Growth of an Mo2C—Graphene Hybrid Film as an Electrode in Self-Powered Two-Sided Mo2C—Graphene/Sb2S0.42Se2.58/TiO2 Photodetectors
Abstract
:1. Introduction
2. Materials and Methods
2.1. CVD Growth of Mo2C and Mo2C—Gr
2.2. Sb2S0.42Se2.58 Deposition and Device Fabrication
2.3. Characterizations and Measurements
3. Results and Discussion
3.1. CVD of Mo2C and Mo2C—Graphene
3.2. Mo2C—Gr/Sb2S0.42Se2.58/TiO2 Photodetectors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tan, C.; Cao, X.; Wu, X.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G.; et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Cruz, S.; Lee, K.; Alawode, B.; Choi, C.; Song, Y.; Johnson, J.; Heidelberger, C.; Kong, W.; Choi, S.; et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 2017, 544, 340–343. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, X.; Wang, J.; Tao, L.; Long, M.; Liang, S.; Ang, L.; Shu, C.; Tsang, H.; Xu, J. Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity. ACS Nano 2017, 11, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Hu, X.Z.; Yu, J.; Liu, S.Y.; Shu, Z.W.; Zhang, Q.; Li, H.Q.; Ma, Y.; Xu, H.; Zhai, T.Y. 2D Layered material-based van der waals heterostructures for optoelectronics. Adv. Funct. Mater. 2018, 28, 1706587. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, C.; Tan, X.Y.; Zhang, L.; Zhong, Y.; Zhu, H.W. Full-inorganic thin film solar cell and photodetector based on “Graphene-on-antimony sulfide” heterostructure. Sol. RRL 2017, 1, 1700135. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Park, J.; Tao, L.; Kim, K.; Lee, Y.; Xu, J. Restoring the photovoltaic effect in graphene-based van der Waals heterojunctions towards self-powered high-detectivity photodetectors. Nano Energy 2019, 57, 214–221. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Meng, J.; Yin, Z.; Zhang, L.; Wang, H.; Wu, J. High efficiency Schottky junction solar cells by co-doping of graphene with gold nanoparticles and nitric acid. Appl. Phys. Lett. 2015, 106, 233901. [Google Scholar] [CrossRef]
- Ho, P.; Lee, W.; Liou, Y.; Chiu, Y.; Shih, Y.; Chen, C.; Su, P.; Li, M.; Chen, H.; Liang, C.; et al. Sunlight-activated graphene-heterostructure transparent cathodes: Enabling high-performance n-graphene/p-Si Schottky junction photovoltaics. Energy Environ. Sci. 2015, 8, 2085. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef] [PubMed]
- Ghidiu, M.; Lukatskaya, M.R.; Zhao, M.Q.; Gogotsi, Y.; Barsoum, M.W. Conductive two-dimensional titaniumcarbide ‘clay’ with high volumetric capacitance. Nature 2014, 516, 78–81. [Google Scholar] [PubMed]
- Lukatskaya, M.R.; Mashtalir, O.; Ren, C.E.; Agnese, Y.D.; Rozier, P.; Taberna, P.L.; Naguib, M.; Simon, P.; Barsoum, M.W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505. [Google Scholar] [CrossRef] [PubMed]
- Naguib, M.; Halim, J.; Lu, J.; Cook, K.M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. New two-dimensional niobium and vanadium Carbides as promising materials for Li-Ion batteries. J. Am. Chem. Soc. 2013, 135, 15966–15969. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Shim, J.; Park, J.H.; Lee, S. MXene electrode for the integration of WSe2 and MoS2 field effect transistors. Adv. Funct. Mater. 2016, 26, 5328–5334. [Google Scholar] [CrossRef]
- Dillon, A.D.; Ghidiu, M.J.; Krick, A.L.; Griggs, J.; May, S.J.; Gogotsi, Y.; Barsoum, M.W.; Fafarman, A.T. Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 2016, 26, 4162–4168. [Google Scholar] [CrossRef]
- Mariano, M.; Mashtalir, O.; Antonio, F.; Ryu, W.; Deng, B.; Xia, F.; Gogotsi, Y.; Taylor, A. Solution-processed titanium carbide MXene films examined as highly transparent conductors. Nanoscale 2016, 8, 16371–16378. [Google Scholar] [CrossRef] [PubMed]
- Rakhi, R.B.; Ahmed, B.; Hedhili, M.N.; Anjum, D.H.; Alshareef, H.N. Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mater. 2015, 27, 5314–5323. [Google Scholar] [CrossRef]
- Xu, C.; Wang, L.; Liu, Z.; Chen, L.; Guo, J.; Kang, N.; Ma, X.L.; Cheng, H.M.; Ren, W. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 2015, 14, 1135–1141. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; Chen, Y.; Li, J.; Xue, H.; Mendes, R.G.; Liu, J.; Zhang, T.; Rümmeli, M.H.; Fu, L. 2D WC single crystal embedded in graphene for enhancing hydrogen evolution reaction. Nano Energy 2017, 33, 356–362. [Google Scholar] [CrossRef]
- Wang, Z.; Kochat, V.; Pandey, P.; Kashyap, S.; Chattopadhyay, S.; Samanta, A.; Sarkar, S.; Manimunda, P.; Zhang, X.; Asif, S.; et al. Metal immiscibility route to synthesis of ultrathin carbides, borides, and nitrides. Adv. Mater. 2017, 29, 1700364. [Google Scholar] [CrossRef] [PubMed]
- Geng, D.; Zhao, X.; Li, L.; Song, P.; Tian, B.; Liu, W.; Chen, J.; Shi, D.; Lin, M.; Zhou, W.; et al. Controlled growth of ultrathin Mo2C superconducting crystals on liquid Cu surface. 2D Mater. 2016, 4, 011012. [Google Scholar] [CrossRef]
- Geng, D.; Zhao, X.; Chen, Z.; Sun, W.; Fu, W.; Chen, J.; Liu, W.; Zhou, W.; Loh, K.P. Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv. Mater. 2017, 29, 1700072. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.M.; Chen, Y.; Zhao, W.Q.; Ding, L.W.; Wen, L.; Li, H.X.; Jiang, F.; Su, J.; Li, L.Y.; Liu, N.S.; et al. A self-powered fast-response ultraviolet detector of p–n homojunction assembled from Two ZnO-based nanowires. Nano Micro Lett. 2017, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Colado, C.; Arredondo, B.; Torres, J.; López-Fraguas, E.; Vergaz, R.; Martín-Martín, D.; Pozo, G.; Romero, B.; Apilo, P.; Quintana, X.; et al. An all-organic flexible visible light communication system. Sensors 2018, 18, 3045. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Qin, S.; Xue, D.; Chen, C.; He, Y.; Niu, D.; Huang, H.; Tang, J. In situ sulfurization to generate Sb2(Se1-xSx)3 alloyed films and their application for photovoltaics. Prog. Photovolt. Res. Appl. 2017, 25, 113–122. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Li, C.; Chen, Q.; Zhen, Z.; Jiang, X.; Zhong, M.; Zhang, F.; Zhu, H.W. Scalable low-band-gap Sb2Se3 thin-film photocathodes for efficient visible−near-infrared solar hydrogen evolution. ACS Nano 2017, 11, 12753–12763. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Yuan, S.; Yang, X.; Cai, F.; Hu, C.; Qiao, K.; Zhang, J.; Tang, J.; Song, H.; He, Z. Efficient and stable TiO2/Sb2S3 planar solar cells from absorber crystallization and Se-atmosphere annealing. Mater. Today Energy 2017, 3, 15–23. [Google Scholar] [CrossRef]
- Qiao, J.B.; Gong, Y.; Zuo, W.J.; Wei, Y.C.; Ma, D.L.; Yang, H.; Yang, N.; Qiao, K.Y.; Shi, J.A.; Gu, L.; et al. One-step synthesis of van der Waals heterostructures of graphene and two-dimensional superconducting α-Mo2C. Phys. Rev. B 2017, 95, 201403. [Google Scholar] [CrossRef]
- Geng, D.C.; Wu, B.; Guo, Y.L.; Huang, L.P.; Xue, Y.Z.; Chen, J.Y.; Yu, G.; Jiang, L.; Hu, W.P.; Liu, Y.Q. Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proc. Natl. Acad. Sci. USA 2012, 109, 7992–7996. [Google Scholar] [CrossRef] [PubMed]
- Parthé, E.; Sadogopan, V. The structure of dimolybdenum carbide by neutron diffraction technique. Acta Cryst. 1963, 16, 202–205. [Google Scholar] [CrossRef]
- Xu, C.; Song, S.; Liu, Z.; Chen, L.; Wang, L.; Fan, D.; Kang, N.; Ma, X.; Cheng, H.M.; Ren, W.C. Strongly coupled high-quality graphene/2D superconducting Mo2C vertical heterostructures with aligned orientation. ACS Nano 2017, 11, 5906–5914. [Google Scholar] [CrossRef] [PubMed]
- Bagge-Hansen, M.; Outlaw, R.A.; Miraldo, P.; Zhu, M.Y.; Hou, K.; Theodore, N.D.; Zhao, X.; Manos, D.M. Field emission from Mo2C coated carbon nanosheets. J. Appl. Phys. 2008, 103, 014311. [Google Scholar] [CrossRef]
- Rouse, A.A.; Bernhard, J.B.; Sosa, E.D.; Golden, D.E. Field emission from molybdenum carbide. Appl. Phys. Lett. 2000, 76, 2583. [Google Scholar] [CrossRef]
- Kang, Z.; Tan, X.Y.; Li, X.; Xiao, T.; Zhang, L.; Lao, J.C.; Li, X.M.; Cheng, S.; Xie, D.; Zhu, H.W. Self-deposition of Pt nanoparticles on graphene woven fabrics for enhanced hybrid Schottky junctions and photoelectrochemical solar cells. Phys. Chem.Chem. Phys. 2016, 18, 1992–1997. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhu, M.; Du, M.; Lv, Z.; Zhang, L.; Li, Y.; Yang, Y.; Yang, T.; Li, X.; Wang, K.; et al. High detectivity graphene-silicon heterojunction photodetector. Small 2016, 12, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.; Li, L.; Su, J.; Tu, F.; Liu, N.; Gao, Y.H. A General method for preparing anatase TiO2 treelike-nanoarrays on various metal wires for fiber dye-sensitized solar cells. Sci. Rep. 2014, 4, 4420. [Google Scholar] [CrossRef] [PubMed]
- Santiago, F.F.; Bisquert, J.; Palomares, E.; Otero, L.; Kuang, D.B.; Zakeeruddin, S.M.; Gratzel, M. Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. J. Phys. Chem. C 2007, 111, 6550–6560. [Google Scholar] [CrossRef]
- Hirschorn, B.; Orazem, M.E.; Tribollet, B.; Vivier, V.; Frateur, I.; Musiani, M. Constant-phase-element behavior caused by resistivity distributions in films. J. Electrochem. Soc. 2010, 157, C452–C457. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, Z.; Zheng, Z.; Wei, H.; Zhang, Z.; Tan, X.; Xiong, L.; Zhai, T.; Gao, Y. Controlled Growth of an Mo2C—Graphene Hybrid Film as an Electrode in Self-Powered Two-Sided Mo2C—Graphene/Sb2S0.42Se2.58/TiO2 Photodetectors. Sensors 2019, 19, 1099. https://doi.org/10.3390/s19051099
Kang Z, Zheng Z, Wei H, Zhang Z, Tan X, Xiong L, Zhai T, Gao Y. Controlled Growth of an Mo2C—Graphene Hybrid Film as an Electrode in Self-Powered Two-Sided Mo2C—Graphene/Sb2S0.42Se2.58/TiO2 Photodetectors. Sensors. 2019; 19(5):1099. https://doi.org/10.3390/s19051099
Chicago/Turabian StyleKang, Zhe, Zhi Zheng, Helin Wei, Zhi Zhang, Xinyu Tan, Lun Xiong, Tianyou Zhai, and Yihua Gao. 2019. "Controlled Growth of an Mo2C—Graphene Hybrid Film as an Electrode in Self-Powered Two-Sided Mo2C—Graphene/Sb2S0.42Se2.58/TiO2 Photodetectors" Sensors 19, no. 5: 1099. https://doi.org/10.3390/s19051099
APA StyleKang, Z., Zheng, Z., Wei, H., Zhang, Z., Tan, X., Xiong, L., Zhai, T., & Gao, Y. (2019). Controlled Growth of an Mo2C—Graphene Hybrid Film as an Electrode in Self-Powered Two-Sided Mo2C—Graphene/Sb2S0.42Se2.58/TiO2 Photodetectors. Sensors, 19(5), 1099. https://doi.org/10.3390/s19051099