Characterization of Nucleobases in Broadband Terahertz Spectra from 0.5 to 10 THz with the Air-Biased-Coherent-Detection Technique
Abstract
:1. Introduction
2. Experimental Procedure and Parameter Calculation
2.1. Experimental Procedure
2.2. Parameter Calculation
3. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Walther, M.; Plochocka, P.; Fischer, B.; Helm, H.; Uhd Jepsen, P. Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy. Biopolymers 2010, 67, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Son, J.H. Terahertz electromagnetic interactions with biological matter and their applications. J. Appl. Phys. 2009, 105, 102033. [Google Scholar] [CrossRef]
- Wenjun, Z.; Brooks, B.R.; Thirumalai, D. Low-frequency normal modes that describe allosteric transitions in biological nanomachines are robust to sequence variations. Proc. Natl. Acad. Sci. USA 2006, 103, 7664–7669. [Google Scholar]
- Ferguson, B.; Zhang, X.C. Materials for terahertz science and technology. Physics 2003, 1, 26–33. [Google Scholar]
- Dexheimer, S.L. Terahertz Spectroscopy: Principles and Applications; Cambridge University Press: Cambridge, UK, 2007; pp. 198–209. [Google Scholar]
- Christian, J.; Steffen, W.; Ole, P.; Maik, S.; Nico, V.; Mohammed, S.; Norman, K.; Christian, J.; Thomas, H.; Martin, K. Terahertz imaging: Applications and perspectives. Appl. Opt. 2010, 49, 48–57. [Google Scholar]
- Xiang, Y.; Xiang, Z.; Ke, Y.; Liu, Y.; Yu, L.; Fu, W.; Yang, L. Biomedical Applications of Terahertz Spectroscopy and Imaging. Trends Biotechnol. 2016, 34, 810–824. [Google Scholar]
- Nibali, V.C.; Havenith, M. New Insights into the Role of Water in Biological Function: Studying Solvated Biomolecules Using Terahertz Absorption Spectroscopy in Conjunction with Molecular Dynamics Simulations. J. Am. Chem. Soc. 2014, 136, 12800–12807. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.W.; Zhong, J.L.; Zuo, J.; Zhang, C.L.; Dan, G. Principal component analysis of terahertz spectrum on hemagglutinin protein and its antibody. Acta Phys. Sin. 2015, 64, 448–454. [Google Scholar]
- Shi, C.; Ma, Y.; Zhang, J.; Wei, D.; Wang, H.; Peng, X.; Tang, M.; Yan, S.; Zuo, G.; Du, C. Terahertz time-domain spectroscopy of chondroitin sulfate. Biomed. Opt. Express 2018, 9, 1350–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Zhao, D.B.; Jiang, L.; Xu, L.; Sun, H.J.; Liu, Y.F. Research on THz and Raman spectra of RNA nucleobases. Spectrosc. Spectr. Anal. 2016, 36, 3863–3869. [Google Scholar]
- Li, Y.B. Study on Terahertz Spectroscopy of Amino Acids; Capital Normal University: Beijing, China, 2006. [Google Scholar]
- Shen, Y.C.; Upadhya, P.C.; Linfield, E.H.; Beere, H.E.; Davies, A.G. Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters. Appl. Phys. Lett. 2003, 83, 3117–3119. [Google Scholar] [CrossRef]
- Thomson, M.D.; Volker, B.; Roskos, H.G. Terahertz white-light pulses from an air plasma photo-induced by incommensurate two-color optical fields. Opt. Express 2010, 18, 23173–23182. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.C.; Upadhya, P.C.; Beere, H.E.; Linfield, E.H.; Davies, A.G.; Gregory, I.S.; Baker, C.; Tribe, W.R.; Evans, M.J. Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers. Appl. Phys. Lett. 2004, 85, 164–166. [Google Scholar] [CrossRef]
- Jin, Q.; Liu, J.; Wang, K.; Yang, Z.; Wang, S.; Ye, K. Oscillation effect in frequency domain current from a photoconductive antenna via double-probe-pulse terahertz detection technique. Front. Optoelectron. 2015, 8, 104–109. [Google Scholar] [CrossRef]
- Lu, Z.G.; Campbell, P.; Zhang, X.C. Free-space electro-optic sampling with a high-repetition-rate regenerative amplified laser. Appl. Phys. Lett. 1997, 71, 593–595. [Google Scholar] [CrossRef]
- Ilyakov, I.E.; Kitaeva, G.K.; Shishkin, B.V.; Akhmedzhanov, R.A. Electro-optic sampling of terahertz waves by laser pulses with an edge-cut spectrum in birefringent crystal. Opt. Lett. 2017, 42, 1704–1707. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.M.; Peng, X.Y.; Xiao-Hui, M.A.; Liu, Y.; Wei, D.S.; Cui, H.L.; Chun-Lei, D.U. Progress of Detection Technology of Ultra-Broadband THz Time-Domain Spectroscopy. Spectrosc. Spectr. Anal. 2016, 36, 1277–1283. [Google Scholar]
- Dai, J.; Liu, J.; Zhang, X.C. Terahertz Wave Air Photonics: Terahertz Wave Generation and Detection With Laser-Induced Gas Plasma. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 183–190. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, X.C. Balanced terahertz wave air-biased-coherent-detection. Appl. Phys. Lett. 2011, 98, 151111–151113. [Google Scholar] [CrossRef]
- He, J.; Mu, K.; Yang, H.; Hou, D.; Ma, S.; Shi, X. Experimental Study of Super-bBoadband Terahertz Coherent Detection with Air Plasma. Laser Optoelectron. Prog. 2013, 50, 202–206. [Google Scholar]
- Francesco, D.A.; Zoltán, M.; Mischa, B.; Dmitry, T. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics. Opt. Express 2014, 22, 12475–12485. [Google Scholar]
- Zhang, L.; Huang, S.; Zhang, C.L. Terahertz Spectroscopy Investigation of Substrate Materials for Biological Application in the Frequency Range of 1~15THz. Spectrosc. Spectr. Anal. 2017, 37, 346–349. [Google Scholar]
- Abu Amous, B.; Rui, F.; Nandi, A.K. Central Dogma of Molecular Biology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1970; pp. 561–563. [Google Scholar]
- Fischer, B.M.; Walther, M.; Jepsen, P.U. Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy. Phys. Med. Biol. 2002, 47, 3807–3814. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Yamada, T.; Sasaki, T.; Tanabe, T.; Suto, K.; Nishizawa, J.I.; Kimura, T. THz transmittance measurements of nucleobases and related molecules in the 0.4- to 5.8-THz region using a GaP THz wave generator. Opt. Commun. 2005, 246, 229–239. [Google Scholar]
- Wang, F.; Zhao, D.; Dong, H.; Jiang, L.; Liu, Y.; Li, S. Terahertz spectra of DNA nucleobase crystals: A joint experimental and computational study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 179, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Hui, Y.; Fan, W.H.; Zheng, Z.P.; Jia, L. Terahertz Spectroscopy of DNA Nucleobases:Cytosine and Thymine. Spectrosc. Spectr. Anal. 2013, 33, 2612–2616. [Google Scholar]
- Yoo, Y.J.; Kuk, D.; Zhong, Z.; Kim, K.Y. Generation and Characterization of Strong Terahertz Fields from kHz Laser Filamentation. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1–7. [Google Scholar] [CrossRef]
- Mickan, S.P.; Zhang, X.C. T-Ray Sensing and Imaging. Int. J. High Speed Electron. Syst. 2003, 13, 601–676. [Google Scholar] [CrossRef]
- Zheng, Z.P.; Fan, W.H.; Li, H.; Tang, J. Terahertz spectral investigation of anhydrous and monohydrated glucose using terahertz spectroscopy and solid-state theory. J. Mol. Spectrosc. 2014, 296, 9–13. [Google Scholar] [CrossRef]
- Bánhegyi, G. Numerical analysis of complex dielectric mixture formulae. Colloid Polym. Sci. 1988, 266, 11–28. [Google Scholar] [CrossRef]
- Papari, G.P.; Gargiulo, V.; Alfè, M.; Capua, R.D.; Pezzella, A.; Andreone, A. THz spectroscopy on graphene-like materials for bio-compatible devices. J. Appl. Phys. 2017, 121, 145107. [Google Scholar] [CrossRef]
- Wang, M.-W.; Woo, B.K.; Tian, Z.; Han, J.-G.; Chen, W.; Zhang, W.-L. Study of optical and dielectric properties of annealed ZnO nanoparticles in the terahertz regime. Optoelectron. Lett. 2009, 5, 430–433. [Google Scholar] [CrossRef]
- Thamizhmani, L.; Azad, A.K.; Dai, J.; Zhang, W. Far-infrared optical and dielectric response of ZnS measured by terahertz time-domain spectroscopy. Appl. Phys. Lett. 2005, 86, 229. [Google Scholar] [CrossRef]
- Han, J.; Azad, A.K.; Zhang, W. Far-Infrared Characteristics of Bulk and Nanostructured Wide-Bandgap Semiconductors. J. Nanoelectron. Optoelectron. 2007, 2, 222–233. [Google Scholar] [CrossRef] [Green Version]
- Duvillaret, L.; Garet, F.; Coutaz, J.L. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE J. Sel. Top. Quantum Electron. 2002, 2, 739–746. [Google Scholar] [CrossRef]
- Pupeza, I.; Wilk, R.; Koch, M. Highly accurate optical material parameter determination with THz time-domain spectroscopy. Opt. Express 2007, 15, 4335–4350. [Google Scholar] [CrossRef] [PubMed]
- Zaytsev, K.I.; Gavdush, A.A.; Karasik, V.E.; Alekhnovich, V.I. Accuracy of sample material parameters reconstruction using terahertz pulsed spectroscopy. J. Appl. Phys. 2014, 115, 101–2728. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Sengupta, A.; Barat, R.B.; Gary, D.E.; Federici, J.F.; Chen, M.; Tanner, D.B. Effects of Scattering on THz Spectra of Granular Solids. Int. J. Infrared Millim. Waves 2007, 28, 969–978. [Google Scholar] [CrossRef]
- Zhi, L.I.; Zhang, Z.H.; Zhao, X.Y.; Hai-Xia, S.U. Extracting THz Absorption Coefficient Spectrum Based on Accurate Determination of Sample Thickness. Spectrosc. Spectr. Anal. 2012, 32, 1043–1046. [Google Scholar]
- Zhang, W.; Brown, E.R.; Rahman, M.; Norton, M.L. Observation of terahertz absorption signatures in microliter DNA solutions. Appl. Phys. Lett. 2013, 102, 219–223. [Google Scholar] [CrossRef]
Sample Name | Sample Ingredient | Mass Ratio (%) | Thickness (mm) | |
---|---|---|---|---|
80 mg | A | Pure adenine | 100 | 0.594 |
G | Pure guanine | 0.588 | ||
C | Pure cytosine | 0.600 | ||
T | Pure thymine | 0.589 | ||
U | Pure uracil | 0.597 | ||
50 mg | A | Pure adenine | 100 | 0.320 |
G | Pure guanine | 0.311 | ||
C | Pure cytosine | 0.307 | ||
T | Pure thymine | 0.340 | ||
U | Pure uracil | 0.319 | ||
20 mg | A | Mixture of 20 mg adenine and 60 mg PE | 25 | 0.629 |
G | Mixture of 20 mg guanine and 60 mg PE | 0.634 | ||
C | Mixture of 20 mg cytosine and 60 mg PE | 0.626 | ||
T | Mixture of 20 mg thymine and 60 mg PE | 0.639 | ||
U | Mixture of 20 mg uracil and 60 mg PE | 0.633 | ||
PE | Pure PE 60 mg | 0.508 |
A | THz-ABCD | 1.70 | 2.15 | 2.50 | 3.10 | 4.10 | 5.60 | 6.00 | 7.30 | ||||
TDS [26] | 1.7 | 2.2 | 3.1 | ||||||||||
TDS [27] | 1.67 | 2.11 | 2.54 | 3.05 | 3.44 | 3.89 | 4.18 | ||||||
TDS [28] | 1.75 | 2.09 | 2.5 | ||||||||||
G | THz-ABCD | 2.50 | 3.00 | 4.30 | 4.80 | 5.35 | 6.30 | 7.20 | 9.80 | ||||
TDS [26] | 2.5 | 2.9 | |||||||||||
TDS [27] | 2.57 | 3.00 | 4.31 | 4.84 | 5.44 | ||||||||
TDS [28] | 2.52 | 2.99 | |||||||||||
C | THz-ABCD | 1.55 | 2.75 | 3.40 | 4.35 | 4.75 | 5.95 | 6.95 | |||||
TDS [26] | 1.6 | 2.7 | 3.3 | ||||||||||
TDS [27] | 1.60 | 2.85 | 3.39 | 4.32 | 5.30 | ||||||||
TDS [28] | 1.59 | 2.73 | |||||||||||
TDS [29] | 1.55 | 2.53 | 2.72 | 3.25 | |||||||||
T | THz-ABCD | 1.30 | 2.25 | 2.95 | 4.50 | 5.10 | 6.30 | 8.50 | 9.60 | ||||
TDS [26] | 2.3 | 2.9 | |||||||||||
TDS [27] | 1.36 | 2.29 | 3.00 | 5.10 | |||||||||
TDS [28] | 2.07 | 2.29 | 2.82 | 2.94 | |||||||||
TDS [29] | 1.30 | 2.25 | 2.86 | 3.43 | |||||||||
U | THz-ABCD | 2.30 | 2.70 | 3.30 | 3.80 | 5.90 | |||||||
TDS [27] | 1.69 | 2.31 | 2.68 | 3.44 | 3.84 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Yan, S.; Sun, Y.-q.; Sheng, W.; Tang, F.; Peng, X.-y.; Hu, Y. Characterization of Nucleobases in Broadband Terahertz Spectra from 0.5 to 10 THz with the Air-Biased-Coherent-Detection Technique. Sensors 2019, 19, 1148. https://doi.org/10.3390/s19051148
Yu M, Yan S, Sun Y-q, Sheng W, Tang F, Peng X-y, Hu Y. Characterization of Nucleobases in Broadband Terahertz Spectra from 0.5 to 10 THz with the Air-Biased-Coherent-Detection Technique. Sensors. 2019; 19(5):1148. https://doi.org/10.3390/s19051148
Chicago/Turabian StyleYu, Miao, Shihan Yan, Yong-qiang Sun, Wang Sheng, Fu Tang, Xiao-yu Peng, and Yuan Hu. 2019. "Characterization of Nucleobases in Broadband Terahertz Spectra from 0.5 to 10 THz with the Air-Biased-Coherent-Detection Technique" Sensors 19, no. 5: 1148. https://doi.org/10.3390/s19051148
APA StyleYu, M., Yan, S., Sun, Y. -q., Sheng, W., Tang, F., Peng, X. -y., & Hu, Y. (2019). Characterization of Nucleobases in Broadband Terahertz Spectra from 0.5 to 10 THz with the Air-Biased-Coherent-Detection Technique. Sensors, 19(5), 1148. https://doi.org/10.3390/s19051148