Optimization of the Photon Path Length Probability Density Function-Simultaneous (PPDF-S) Method and Evaluation of CO2 Retrieval Performance Under Dense Aerosol Conditions
Abstract
:1. Introduction
2. PPDF-S Retrieval Method
2.1. Basis of PPDF-S Retrieval
2.2. History and Performance of PPDF-S
3. Methodology
3.1. Basic Equations of Retrieval
3.2. CO2 retrieval Based on Simulation
σy for Band 2: 3.5 × 10−7/SNR [W/m2/str/cm−1]
σy for Band 3: 2.5 × 10−7/SNR [W/m2/str/cm−1]
signal-to-noise ratio (SNR) = 400
3.3. Optimization of PPDF Parameter Settings for More Adequate XCO2 Retrieval
4. Retrieval Performance Based on Simulation Studies
4.1. PPDF Parameter Optimization
4.2. CO2 Retrieval Results
4.2.1. Clear Sky Condition
4.2.2. Atmosphere Including Aerosols of Various Types
- -
- Rural: +1.31 ppm (original method), +0.48 ppm (optimized method)
- -
- Urban: not converged (original method), −1.27 ppm (optimized method)
- -
- Soot: −0.95 ppm (original method), −2.03 ppm (optimized method)
- -
- Dust-like: +11.38 ppm (original method), −1.22 ppm (optimized method)
5. Application of the Optimized Method to GOSAT Data Observed for Western Siberia
5.1. Application to Clear Ssky Conditions in Western Siberia and Validation of the Retrieved XCO2 Using Ground-Based FTS at Yekaterinburg
5.2. Application to Biomass Burning Area in Western Siberia
5.3. Comparison of Results Retrieved Using Optimized PPDF-S Method and Full Physics Method
5.4. Identification of Atmospheric Aerosol Types Using PPDF Parameters
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- GLOBALVIEW-CO2: Cooperative Atmospheric Data Integration Project–Carbon Dioxide; CD-ROM, NOAA ESRL: Boulder, CO, USA, 2008.
- Chédin, A.; Serrar, S.; Scott, N.A.; Crevoisier, C.; Armante, R. First global measurement of midtropospheric CO2 from NOAA polar satellites: Tropical zone. J. Geophys. Res. 2003, 108, 4518. [Google Scholar] [CrossRef]
- Chédin, A.; Serrar, S.; Scott, N.A.; Pierangelo, C.; Ciais, P. Impact of tropical biomass burning emissions on the diurnal cycle of upper tropospheric CO2 retrieved from NOAA 10 satellite observations. J. Geophys. Res. 2005, 110, D11309. [Google Scholar] [CrossRef]
- Imasu, R.; Ogawa, T.; Shimoda, H. Meridional distribution feature of minor constituents as observed by IMG sensor aboard ADEOS satellite. Adv. Space Res. 2000, 25, 959–962. [Google Scholar] [CrossRef]
- Ota, Y.; Imasu, R. CO2 Retrieval Using Thermal Infrared Radiation Observation by Interferometric Monitor for Greenhouse Gases (IMG) Onboard Advanced Earth Observing Satellite (ADEOS). J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 471–490. [Google Scholar] [CrossRef]
- Crevoisier, C.; Chédin, A.; Matsueda, H.; Machida, T.; Armante, R.; Scott, N.A. First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations. Atmos. Chem. Phys. 2009, 9, 4797–4810. [Google Scholar] [CrossRef]
- Kulawik, S.S.; Jones, D.B.A.; Nassar, R.; Irion, F.W.; Worden, J.R.; Bowman, K.W.; Machida, T.; Matsueda, H.; Sawa, Y.; Biraud, S.C.; et al. Characterization of Tropospheric Emission Spectrometer (TES) CO2 for carbon cycle science. Atmos. Chem. Phys. 2010, 10, 5601–5623. [Google Scholar] [CrossRef]
- Chahine, M.T.; Pagano, T.S.; Aumann, H.H.; Atlas, R.; Barnet, C.; Blaisdell, J.; Chen, L.; Divakarla, M.; Fetzer, E.J.; Goldberg, M.; et al. AIRS. Bull. Am. Meteorol. Soc. 2006, 87, 911–926. [Google Scholar] [CrossRef]
- Saitoh, N.; Imasu, R.; Ota, Y.; Niwa, Y. CO2 retrieval algorithm for the thermal infrared spectra of the Greenhouse Gases Observing Satellite: Potential of retrieving CO2 vertical profile from high-resolution FTS sensor. J. Geophys. Res. 2009, 114, D17305. [Google Scholar] [CrossRef]
- Saitoh, N.; Kimoto, S.; Sugimura, R.; Imasu, R.; Kawakami, S.; Shiomi, K.; Kuze, A.; Machida, T.; Sawa, Y.; Matsueda, H. Algorithm update of the GOSAT/TANSO-FTS thermal infrared CO2 product (version 1) and validation of the UTLS CO2 data using CONTRAIL measurements. Atmos. Meas. Tech. 2016, 9, 2119–2134. [Google Scholar] [CrossRef]
- Serio, C.; Masiello, G.; Camy-Peyret, C.; Liuzzi, G. CO2 spectroscopy and forward/inverse radiative transfer modelling in the thermal band using IASI spectra. J. Quant. Spectrosc. Radiat. Transf. 2019, 222–223, 65–83. [Google Scholar] [CrossRef]
- Buchwitz, M.; de Beek, R.; Burrows, J.P.; Bovensmann, H.; Warneke, T.; Notholt, J.; Meirink, J.F.; Goede, A.P.H.; Bergamaschi, P.; Körner, S.; et al. Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: Initial comparison with chemistry and transport models. Atmos. Chem. Phys. 2005, 5, 941–962. [Google Scholar] [CrossRef]
- Yokota, T.; Yoshida, Y.; Eguchi, N.; Ota, Y.; Tanaka, T.; Watanabe, H.; Maksyutov, S. Global Concentrations of CO2 and CH4 Retrieved from GOSAT: First Preliminary Results. SOLA 2009, 5, 160–163. [Google Scholar] [CrossRef]
- Boesch, H.; Baker, D.; Connor, B.; Crisp, D.; Miller, C. Global Characterization of CO2 Column Retrievals from Shortwave-Infrared Satellite Observations of the Orbiting Carbon Observatory-2 Mission. Remote Sens. 2011, 3, 270–304. [Google Scholar] [CrossRef]
- Yang, D.; Liu, Y.; Cai, Z.; Chen, X.; Yao, L.; Lu, D. First Global Carbon Dioxide Maps Produced from TanSat Measurements. Adv. Atmos. Sci. 2018, 35, 621–623. [Google Scholar] [CrossRef]
- Bovensmann, H.; Buchwitz, M.; Burrows, J.P.; Reuter, M.; Krings, T.; Gerilowski, K.; Schneising, O.; Heymann, J.; Tretner, A.; Erzinger, J. A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications. Atmos. Meas. Tech. 2010, 3, 781–811. [Google Scholar] [CrossRef]
- Yoshida, Y.; Ota, Y.; Eguchi, N.; Kikuchi, N.; Nobuta, K.; Tran, H.; Morino, I.; Yokota, T. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite. Atmos. Meas. Tech. 2011, 4, 717–734. [Google Scholar] [CrossRef]
- Yoshida, Y.; Kikuchi, N.; Morino, I.; Uchino, O.; Oshchepkov, S.; Bril, A.; Saeki, T.; Schutgens, N.; Toon, G.C.; Wunch, D.; et al. Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data. Atmos. Meas. Tech. 2013, 6, 1533–1547. [Google Scholar] [CrossRef]
- Boesch, H.; Brown, L.; Castano, R.; Christi, M.; Connor, B.; Crisp, D.; Eldering, A.; Fisher, B.; Frankenberg, C.; Gunson, M.; et al. OCO (Orbiting Carbon Observatory)-2 Level 2 Full Physics Retrieval Algorithm Theoretical Basis Document; OCO-2: Pasadena, CA, USA, 2005. Available online: https://disc.gsfc.nasa.gov/OCO-2/documentation/oco-2-v6/OCO2_L2_ATBD.V6.pdf (accessed on 1 October 2018).
- O’Dell, C.W.; Connor, B.; Bösch, H.; O’Brien, D.; Frankenberg, C.; Castano, R.; Christi, M.; Eldering, D.; Fisher, B.; Gunson, M.; et al. The ACOS CO2 retrieval algorithm—Part 1: Description and validation against synthetic observations. Atmos. Meas. Tech. 2012, 5, 99–121. [Google Scholar] [CrossRef]
- Butz, A.; Hasekamp, O.P.; Frankenberg, C.; Aben, I. Retrievals of atmospheric CO2 from simulated space-borne measurements of backscattered near-infrared sunlight: Accounting for aerosol effects. Appl. Opt. 2009, 48, 3322–3336. [Google Scholar] [CrossRef]
- Butz, A.; Guerlet, S.; Hasekamp, O.; Schepers, D.; Galli, A.; Aben, I.; Frankenberg, C.; Hartmann, J.M.; Tran, H.; Kuze, A.; et al. Toward accurate CO2 and CH4 observations from GOSAT. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Guerlet, S.; Butz, A.; Schepers, D.; Basu, S.; Hasekamp, O.P.; Kuze, A.; Yokota, T.; Blavier, J.F.; Deutscher, N.M.; Griffith, D.W.T.; et al. Impact of aerosol and thin cirrus on retrieving and validating XCO2 from GOSAT shortwave infrared measurements. J. Geophys. Res. 2013, 118, 4887–4905. [Google Scholar] [CrossRef]
- Bösch, H.; Toon, G.C.; Sen, B.; Washenfelder, R.A.; Wennberg, P.O.; Buchwitz, M.; de Beek, R.; Burrows, J.P.; Crisp, D.; Christi, M.; et al. Space-based near-infrared CO2 measurements: Testing the Orbiting Carbon Observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls, Wisconsin. J. Geophys. Res. 2006, 111, D23302. [Google Scholar] [CrossRef]
- Cogan, A.J.; Boesch, H.; Parker, R.J.; Feng, L.; Palmer, P.I.; Blavier, J.F.L.; Deutscher, N.M.; Macatangay, R.; Notholt, J.; Roehl, C.; et al. Atmospheric carbon dioxide retrieved from the Greenhouse gases Observing SATellite (GOSAT): Comparison with ground-based TCCON observations and GEOS-Chem model calculations. J. Geophys. Res. 2012, 117, D21301. [Google Scholar] [CrossRef]
- Kim, W.; Kim, J.; Jung, Y.; Boesch, H.; Lee, H.; Lee, S.; Goo, T.-Y.; Jeong, U.; Kim, M.; Cho, C.-H.; et al. Retrieving XCO2 from GOSAT FTS over East Asia Using Simultaneous Aerosol Information from CAI. Remote Sens. 2016, 8, 994. [Google Scholar] [CrossRef]
- Jung, Y.; Kim, J.; Kim, W.; Boesch, H.; Lee, H.; Cho, C.; Goo, T.-Y. Impact of Aerosol Property on the Accuracy of a CO2 Retrieval Algorithm from Satellite Remote Sensing. Remote Sens. 2016, 8, 322. [Google Scholar] [CrossRef]
- Bril, A.; Oshchepkov, S.; Yokota, T.; Inoue, G. Parameterization of aerosol and cirrus cloud effects on reflected sunlight spectra measured from space: Application of the equivalence theorem. Appl. Opt. 2007, 46, 2460–2470. [Google Scholar] [CrossRef]
- Oshchepkov, S.; Bril, A.; Yokota, T. PPDF-based method to account for atmospheric light scattering in observations of carbon dioxide from space. J. Geophys. Res. 2008, 113, D23210. [Google Scholar] [CrossRef]
- Oshchepkov, S.; Bril, A.; Yokota, T. An improved photon path length probability density function–based radiative transfer model for space-based observation of greenhouse gases. J. Geophys. Res. 2009, 114, D19207. [Google Scholar] [CrossRef]
- Oshchepkov, S.; Bril, A.; Yokota, T.; Yoshida, Y.; Blumenstock, T.; Deutscher, N.M.; Dohe, S.; Macatangay, R.; Morino, I.; Notholt, J.; et al. Simultaneous retrieval of atmospheric CO2 and light path modification from space-based spectroscopic observations of greenhouse gases: Methodology and application to GOSAT measurements over TCCON sites. Appl. Opt. 2013, 52, 1339–1350. [Google Scholar] [CrossRef]
- Iwasaki, C.; Imasu, R.; Bril, A.; Yokota, T.; Yoshida, Y.; Morino, I.; Oshchepkov, S.; Wunch, D.; Griffith, D.W.T.; Deutscher, N.M.; et al. Validation of GOSAT SWIR XCO2 and XCH4 Retrieved by PPDF-S Method and Comparison with Full Physics Method. SOLA 2017, 13, 168–173. [Google Scholar] [CrossRef]
- Bril, A.; Oshchepkov, S.; Yokota, T. Correction of atmospheric scattering effects in space-based observations of carbon dioxide: Model study of desert dust aerosol. J. Quant. Spectrosc. Radiat. Transf. 2008, 109, 1815–1827. [Google Scholar] [CrossRef]
- Oshchepkov, S.; Bril, A.; Maksyutov, S.; Yokota, T. Detection of optical path in spectroscopic space-based observations of greenhouse gases: Application to GOSAT data processing. J. Geophys. Res. 2011, 116, D14304. [Google Scholar] [CrossRef]
- Wunch, D.; Toon, G.C.; Blavier, J.-F.L.; Washenfelder, R.A.; Notholt, J.; Connor, B.J.; Griffith, D.W.T.; Sherlock, V.; Wennberg, P.O. The Total Carbon Column Observing Network. Philos. Trans. R. Soc. A 2011, 369, 2087–2112. [Google Scholar] [CrossRef]
- Oshchepkov, S.; Bril, A.; Yokota, T.; Morino, I.; Yoshida, Y.; Matsunaga, T.; Belikov, D.; Wunch, D.; Wennberg, P.; Toon, G.; et al. Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space: Validation of PPDF-based CO2 retrievals from GOSAT. J. Geophys. Res. 2012, 117, D12305. [Google Scholar] [CrossRef]
- Oshchepkov, S.; Bril, A.; Yokota, T.; Wennberg, P.O.; Deutscher, N.M.; Wunch, D.; Toon, G.C.; Yoshida, Y.; O’Dell, C.W.; Crisp, D.; et al. Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space. Part 2: Algorithm intercomparison in the GOSAT data processing for CO2 retrievals over TCCON sites. J. Geophys. Res. 2013, 118, 1493–1512. [Google Scholar] [CrossRef]
- Bril, A.; Oshchepkov, S.; Yokota, T. Application of a probability density function-based atmospheric light-scattering correction to carbon dioxide retrievals from GOSAT over-sea observations. Remote Sens. Environ. 2012, 117, 301–306. [Google Scholar] [CrossRef]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding; World Scientific: Singapore, 2000; Volume 2, p. 256. [Google Scholar]
- Ota, Y.; Higurashi, A.; Nakajima, T.; Yokota, T. Matrix formulations of radiative transfer including the polarization effect in a coupled atmosphere-ocean system. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 878–894. [Google Scholar] [CrossRef]
- Kurucz, R.L.; Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA. Personal communication, 2008.
- Toon, G.C.; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, MA, USA. Personal communication, 2011.
- Rothman, L.S.; Jacquemart, D.; Barbe, A.; Chris Benner, D.; Birk, M.; Brown, L.R.; Carleer, M.R.; Chackerian, C.; Chance, K.; Coudert, L.H.; et al. The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2005, 96, 139–204. [Google Scholar] [CrossRef]
- Rokotyan, N.V.; Imasu, R.; Zakharov, V.I.; Gribanov, K.G.; Khamatnurova, M.Y. The amplitude of the CO2 seasonal cycle in the atmosphere of the Ural region retrieved from ground-based and satellite near-IR measurements. Atmos. Ocean. Opt. 2015, 28, 49–55. [Google Scholar] [CrossRef]
- Takeuchi, W.; Sekiyama, A.; Imasu, R. Estimation of global carbon emissions from wild fires in forests and croplands. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, Australia, 21–26 July 2013; pp. 1805–1808. [Google Scholar]
- Thompson, D.R.; Chris Benner, D.; Brown, L.R.; Crisp, D.; Malathy Devi, V.; Jiang, Y.; Natraj, V.; Oyafuso, F.; Sung, K.; Wunch, D.; et al. Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 2265–2276. [Google Scholar] [CrossRef]
- Vakkari, V.; Kerminen, V.-M.; Beukes, J.P.; Tiitta, P.; van Zyl, P.G.; Josipovic, M.; Venter, A.D.; Jaars, K.; Worsnop, D.R.; Kulmala, M.; et al. Rapid changes in biomass burning aerosols by atmospheric oxidation. Geophys. Res. Lett. 2014, 41, 2644–2651. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A. Light Scattering Reviews; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
Parameter | Details |
---|---|
Multiple scattering radiative transfer model | Polarization System for Transfer of Atmospheric Radiation3 (Pstar3) [40] |
Solar Irradiance Model | Band 1: Kurucz’s model [41]/Bands 2, 3: Toon’s model [42] |
Zenith angle | Solar: 30°/Satellite: 0° |
Surface albedo | 0.05–0.50 (Bands 1, 2, 3) |
Surface pressure | Grid Pointed Value (GPV) data of middle latitude summer from Japan Meteorological Agency (JMA) |
Temperature and pressure profile | |
Water vapor (H2O) profile | |
Carbon dioxide (CO2) profile | 390 ppm in all layers |
Aerosol types | Dust-like Urban, Rural, Soot (volume mixing ratio is given at 0–2 km) |
Aerosol Optical Thickness (AOT) | 0.05–1.0 |
Gas absorption | Line-By-Line (LBL) calculation using HIgh resolution TRANsmission molecular absorption database (HITRAN) 2004 [43] |
Parameter | A priori (xa) | Variance (σa) |
---|---|---|
CO2 | 385 ppm in all layers | where σai,i = 6 ppm and pi is pressure at the ith level. |
hr | 5 km | 0.001 km |
βαr1 | where Γi is surface albedo at Band i (i = 1, 2, 3). | 0.01 |
βρr2 | 1 | 0.01 |
βγr3 | 3 | 0.002 |
ha | 5 km | 0.5 km |
βαa1 | 0.1 | |
βρa2 | 1 | (for Gain H 4), (for Gain M 5) |
βγa3 | 3 | (for Gain H 4), (for Gain M 5) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwasaki, C.; Imasu, R.; Bril, A.; Oshchepkov, S.; Yoshida, Y.; Yokota, T.; Zakharov, V.; Gribanov, K.; Rokotyan, N. Optimization of the Photon Path Length Probability Density Function-Simultaneous (PPDF-S) Method and Evaluation of CO2 Retrieval Performance Under Dense Aerosol Conditions. Sensors 2019, 19, 1262. https://doi.org/10.3390/s19051262
Iwasaki C, Imasu R, Bril A, Oshchepkov S, Yoshida Y, Yokota T, Zakharov V, Gribanov K, Rokotyan N. Optimization of the Photon Path Length Probability Density Function-Simultaneous (PPDF-S) Method and Evaluation of CO2 Retrieval Performance Under Dense Aerosol Conditions. Sensors. 2019; 19(5):1262. https://doi.org/10.3390/s19051262
Chicago/Turabian StyleIwasaki, Chisa, Ryoichi Imasu, Andrey Bril, Sergey Oshchepkov, Yukio Yoshida, Tatsuya Yokota, Vyacheslav Zakharov, Konstantin Gribanov, and Nikita Rokotyan. 2019. "Optimization of the Photon Path Length Probability Density Function-Simultaneous (PPDF-S) Method and Evaluation of CO2 Retrieval Performance Under Dense Aerosol Conditions" Sensors 19, no. 5: 1262. https://doi.org/10.3390/s19051262
APA StyleIwasaki, C., Imasu, R., Bril, A., Oshchepkov, S., Yoshida, Y., Yokota, T., Zakharov, V., Gribanov, K., & Rokotyan, N. (2019). Optimization of the Photon Path Length Probability Density Function-Simultaneous (PPDF-S) Method and Evaluation of CO2 Retrieval Performance Under Dense Aerosol Conditions. Sensors, 19(5), 1262. https://doi.org/10.3390/s19051262