Removal of Artifacts from EEG Signals: A Review
Abstract
:1. Introduction
2. Background
2.1. Characteristics of the EEG
2.2. Types of Artifacts
2.2.1. Ocular Artifacts
2.2.2. Muscle Artifacts
2.2.3. Cardiac artifacts
2.2.4. Extrinsic Artifacts
3. Single Artifacts Removal Techniques
3.1. Regression Methods
3.2. Wavelet Transform
3.3. BSS
3.3.1. Principal Component Analysis
3.3.2. Independent Component Analysis
- (1)
- Source signals are statistically independent from each other and instantaneously mixed.
- (2)
- (3)
- Sources are non-Gaussian or only one source are Gaussian.
3.3.3. Canonical Correlation Analysis
3.3.4. Source Imaging Based Method
3.4. Empirical Mode Decomposition
- (1)
- Set b[n] equal to input signal sequence x[n].
- (2)
- Calculate all the local maxima and local minima, and connect them separately with cubic spline interpolation. The upper envelope u[n] and lower envelop l[n] are obtained.
- (3)
- Calculate the mean value as: μ[n] = (u[n] + l[n])/2, and subtract it form original.
- (4)
- Decide whether b[n] is an IMF or not according to the condition described above.
- (5)
- Repeat steps 2–4 process until an IMF is obtained and assign b[n] to bk[n].
- (6)
- Once a IMF is obtained, generate the residue r[n] as: r[n] = r[n] − bk[n].
- (7)
- Repeat steps 1–5 on the residue as the input signal sequence until the final residue is a constant, a monotonic function, or a function with only one maximum and one minimum.
3.5. Filtering Methods
3.5.1. Adaptive Filtering
3.5.2. Wiener Filtering
3.6. Sparse Decomposition Methods
4. Hybrid Methods
4.1. EMD-BSS
4.2. Wavelet-BSS
4.3. BSS and Support Vector Machine
5. Comparative Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Frederik, V.; Luca, F.; Esin, K.; Jitkomut, S.; Pedro, A.V.; Daniele, M. Critical comments on EEG sensor space dynamical connectivity analysis. Brain Topogr. 2016, 1–12. [Google Scholar] [CrossRef]
- Henry, J.C. Electroencephalography: Basic principles, clinical applications, and related fields, fifth edition. Neurology 2006, 67, 2092. [Google Scholar] [CrossRef]
- Hirsch, L.J.; Brenner, R.P. Atlas of EEG in Critical Care; John Wiley and Sons: Hoboken, NJ, USA, 2010; Volume 30, pp. 187–216. ISBN 9780470746707. [Google Scholar]
- Nunez, P.L.; Srinivasan, R. Electric Fields of the Brain: The Neurophysics of EEG, 2nd ed.; Oxford University Press: New York, NY, USA, 2005; pp. 154–169. ISBN 9780195050387. [Google Scholar]
- Wang, H.; Lei, X.; Zhan, Z.; Yao, L.; Wu, X. A new fMRI informed mixed-norm constrained algorithm for EEG source localization. IEEE Access 2018, 6, 8258–8269. [Google Scholar] [CrossRef]
- Radüntz, T.; Scouten, J.; Hochmuth, O.; Meffert, B. Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features. J. Neural Eng. 2017, 14, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Yang, Q.; Wang, R.; Lin, P.; Gao, J.; Leng, Y.; Yang, Y.; Wang, H. A brain-computer interface based on a few-channel EEG-fNIRS bimodal system. IEEE Access 2017, 5, 208–218. [Google Scholar] [CrossRef]
- Fatourechi, F.; Bashashati, A.; Ward, R.K.; Birch, G.E. EMG and EOG artifacts in brain computer interface systems: A survey. Clin. Neurophysiol. 2007, 118, 480–494. [Google Scholar] [CrossRef] [PubMed]
- Naeem Mannan, M.; Ahmad, K.M.; Shinil, K.; Myung, Y.J. Effect of EOG Signal Filtering on the Removal of Ocular Artifacts and EEG-Based Brain-Computer Interface: A Comprehensive Study. Complexity 2018, 2018, 18–36. [Google Scholar] [CrossRef]
- Tamburro, G.; Fiedler, P.; Stone, D.; Haueisen, J.; Comani, S. A new ICA-based fingerprint method for the automatic removal of physiological artifacts from EEG recordings. PeerJ 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Labate, D.; La Foresta, F.; Mammone, N.; Morabito, F.C. Effects of Artifacts Rejection on EEG Complexity in Alzheimer’s Disease. In Advances in Neural Networks: Computational and Theoretical Issues; Bassis, S., Esposito, A., Morabito, F., Eds.; Springer: Cham, Switzerland, 2015; Volume 37, pp. 129–136. ISBN 978-3-319-18163-9. [Google Scholar]
- Husseen, A.H.; Emmanuel, J.; Sun, L.; Emmanuel, I. Complexity Measures for Quantifying Changes in Electroencephalogram in Alzheimer s Disease. Complexity 2018, 2018, 1–12. [Google Scholar] [CrossRef]
- Sweeney, K.T.; Ward, T.E.; McLoone, S.F. Artifact removal in physiological signals practices and possibilities. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 488–500. [Google Scholar] [CrossRef] [PubMed]
- Somers, B.; Bertrand, A. Removal of eye blink artifacts in wireless EEG sensor networks using reduced-bandwidth canonical correlation analysis. J. Neural Eng. 2016, 13, 066008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira, A.; Tome, A.; Lang, E.; Gruber, P.; Martins da Silva, A. Automatic removal of high-amplitude artefacts from single-channel electroencephalograms. Comput. Methods Programs Biomed. 2006, 83, 125–138. [Google Scholar] [CrossRef] [PubMed]
- James, C.J.; Hesse, C.W. Independent component analysis for biomedical signals. Physiol. Meas. 2005, 26, 15–39. [Google Scholar] [CrossRef]
- Niedermeyer, E.; Lopes da Silva, F.H. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th ed.; Raven Press: New York, NY, USA, 2005; pp. 654–660. ISBN 978-0781789424. [Google Scholar]
- Minguillon, J.; Lopez-Gordo, M.A.; Pelayo, F. Trends in EEG-BCI for daily-life: Requirements for artifact removal. Biomed. Signal Process. Control 2017, 31, 407–418. [Google Scholar] [CrossRef]
- Johal, P.K.; Jain, N. Artifact removal from EEG: A comparison of techniques. In Proceedings of the 2016 International Conference on Electrical, Electronics, and Optimization Techniques, Chennai, Indian, 3–5 March 2016. [Google Scholar]
- Jebelli, H.; Hwang, S.; Lee, S. EEG-based workers’ stress recognition at construction sites. Autom. Constr. 2018, 93, 315–324. [Google Scholar] [CrossRef]
- Urigüen, J.A.; Garciazapirain, B. EEG artifact removal—State-of-the-art and guidelines. J. Neural Eng. 2015, 12. [Google Scholar] [CrossRef] [PubMed]
- Huppert, T.J.; Diamond, S.G.; Franceschini, M.A.; Boas, D.A. HomER: A review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl. Opt. 2009, 48, D280–D298. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.K.; Rastegarnia, A.; Yang, Z. Methods for Artifact Detection and Removal from Scalp EEG: A Review. Clin. Neurophysiol. 2016, 46, 287–385. [Google Scholar] [CrossRef] [PubMed]
- Anderer, P.; Roberts, S.; Schlögl, A.; Gruber, G.; Klösch, G.; Herrmann, W.; Rappelsberger, P.; Filz, O.; Barbanoj, M.J.; Dorffner, G.; et al. Artifact processing in computerized analysis of sleep EEG—A review. Neuropsychobiology 1999, 40, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Garrick, L.W.; Robert, E.K.; Anita, M.; Jeffrey, F.C.; Nathan, A.F. Automatic correction of ocular artifacts in the EEG: A comparison of regression-based and component-based methods. Int. J. Psychophysiol. 2004, 53, 105–119. [Google Scholar] [CrossRef]
- Schlögl, A.; Keinrath, C.; Zimmermann, D.; Scherer, R.; Leeb, R.; Pfurtscheller, G. A fully automated correction method of EOG artifacts in EEG recordings. Clin. Neurophysiol. 2007, 118, 98–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamal, A.Q.; Rehman, A.W.B.A. Artifact Processing of Epileptic EEG Signals: An Overview of Different Types of Artifacts. In Proceedings of the 2013 International Conference on Advanced Computer Science Applications and Technologies, Kuching, Malaysia, 22–24 December 2013. [Google Scholar]
- Croft, R.J.; Barry, R.J. Removal of ocular artifacts from the EEG: A review. Clin. Neurophysiol. Clin. 2000, 30, 5–19. [Google Scholar] [CrossRef]
- Goncharova, I.I.; Mcfarland, D.J.; Vaughan, T.M.; Wolpaw, J.R. EMG contamination of EEG: Spectral and topographical characteristics. Clin. Neurophysiol. 2003, 114, 1580–1593. [Google Scholar] [CrossRef]
- Mcmenamin, B.W.; Shackman, A.J.; Greischar, L.L.; Davidson, R.J. Electromyogenic artifacts and electroencephalographic inferences revisited. Neuroimage 2011, 54, 4–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devuyst, S.; Dutoit, T.; Stenuit, P.; Kerkhofs, M.; Stanus, E. Removal of ECG artifacts from EEG using a modified independent component analysis approach. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008. [Google Scholar]
- Chen, X.; Liu, A.; Chiang, J.; Wang, Z.J.; Mckeown, M.J.; Ward, R.K. Removing muscle artifacts from EEG data: Multichannel or single-channel techniques? IEEE Sens. J. 2016, 16, 1986–1997. [Google Scholar] [CrossRef]
- Lee, K.J.; Park, C.; Lee, B. Elimination of ECG Artifacts from a Single-Channel EEG Using Sparse Derivative Method. In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, Kowloon, China, 9–12 Octorber 2015. [Google Scholar]
- Nolte, G.; Bai, O.; Wheaton, L.; Mari, Z.; Vorbach, S.; Hallett, M. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin. Neurophysiol. 2014, 115, 2292–2307. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Xu, P.; Yao, D. A comparative study of different references for EEG default mode network: The use of the infinity reference. Clin. Neurophysiol. 2010, 121, 1981–1991. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Li, F.; Liu, Q.; Wen, X.; Lai, Y.; Xu, P.; Yao, D. Matlab toolboxes for reference electrode standardization technique (REST) of scalp EEG. Front. Neurosci. 2017, 11, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Klados, M.A.; Papadelis, C.; Braun, C.; Bamidis, P.D. REG-ICA: A hybrid methodology combining blind source separation and regression techniques for the rejection of ocular artifacts. Biomed. Signal Process Control 2011, 10, 291–300. [Google Scholar] [CrossRef]
- Hillyard, S.A.; Galambos, R. Eye movement artifact in the CNV. Electroencephalogr. Neurophysiol. 1970, 28, 173–182. [Google Scholar] [CrossRef]
- Whitton, J.L.; Lue, F.; Moldofsky, H. A spectral method for removing eye movement artifacts from the EEG. Electroencephalogr. Clin. Neurophysiol. 1978, 44, 735–741. [Google Scholar] [CrossRef]
- Wallstrom, G.L.; Kass, R.E.; Miller, A.; Cohn, J.; Fox, N. Correction of ocular artifacts in the EEG using Bayesian adaptive regression splines. In Case Studies in Bayesian Statistics; Gatsonis, C., Kass, R.E., Carriquiry, A., Gelman, A., Higdon, D., Pauler, D.K., Verdinelli, I., Eds.; Springer: New York, NY, USA, 2002; Volume 6, pp. 351–356. ISBN 978-0-387-95472-1. [Google Scholar]
- Flumeri, G.D.; Aricó, P.; Borghini, G.; Colosimo, A.; Babiloni, F. A New Regression-based Method for the Eye Blinks Artifacts Correction in the EEG Signal, without Using Any EOG Channel. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016. [Google Scholar]
- Kumar, S.P.; Arumuganathan, R.; Sivakuma, K.; Vimal, C. Removal of Ocular Artifacts in the EEG through Wavelet Transform without using an EOG Reference Channel. Int. J. Open Probl. Comput. Math. 2008, 1, 189–200. [Google Scholar]
- Safieddine, D.; Kachenoura, A.; Albera, L.; Birot, G.; Karfoul, A.; Pasniu, A. Removal of muscle artifact from EEG data: Comparison between stochastic (ICA and CCA) and deterministic (EMD and wavelet-based) approaches. EURASIP J. Adv. Signal Process. 2012, 2012. [Google Scholar] [CrossRef]
- Lakshmi, K.G.A.; Surling, S.N.N.; Sheeba, O. A Novel Approach for the Removal of Artifacts in EEG Signals. In Proceedings of the 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 22–24 March 2017. [Google Scholar]
- Berg, P.; Scherg, M. Dipole modeling of eye activity and its application to the removal of eye artefacts from the EEG ad MEG. Clin. Phys. Physiol. Meas. 1991, 12, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Casarotto, S.; Bianchi, A.M.; Cerutti, S.; Chiarenza, G.A. Principal component analysis for reduction of ocular artefacts in event-related potentials of normal and dyslexic children. Clin. Neurophysiol. 2004, 115, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Jung, T.P.; Makieg, S.; Bell, A.J.; Sejnowski, T.J. Independent component analysis of electroencephalographic and event-related potential data. Cent. Audit. Process. Neural Model. 1996, 2, 1548–1551. [Google Scholar]
- Vigário, R. Extraction of ocular artifacts from EEG using independent component analysis. Electroencephalogr. Clin. Neurophysiol. 1997, 103, 395–404. [Google Scholar] [CrossRef]
- Vigário, R.; Särelä, J.; Jousmäki, V.; Hämäläinen, M.; Oja, E. Independent component approach to the analysis of EEG and MEG recordings. IEEE Trans. Biomed. Eng. 2000, 47, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Jung, T.P.; Makeig, S.; Westerfield, M.; Townsend, J.; Courchesne, E.; Sejnowski, T.J. Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin. Neurophysiol. 2000, 111, 1745–1758. [Google Scholar] [CrossRef] [Green Version]
- Romero, S.; Mailanas, M.; Clos, S.; Gimenez, S.; Barbanoj, M.J. Reduction of EEG Artifacts by ICA in Different Sleep Stages. In Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Cancun, Mexico, 17–21 September 2003. [Google Scholar]
- Delorme, A.; Makeig, S.; Sejnowski, T. Automatic artifact rejection for EEG data using high-order statistics and independent component analysis. In Proceedings of the Third International ICA Conference, San Diego, CA, USA, 9–12 December 2001. [Google Scholar]
- Joyce, C.A.; Gorodnitsky, I.F.; Kutas, M. Automatic removal of eye movement and blink artifacts from EEG data using blind component separation. Psychophysiology 2004, 41, 313–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bian, N.Y.; Wang, B.; Cao, Y.; Zhang, L. Automatic Removal of Artifacts from EEG Data Using ICA and Exponential Analysis. In Proceedings of the Third International Conference on Advances in Neural Networks, Chengdu, China, 28 May–1 June 2006. [Google Scholar]
- Li, Y.; Ma, Z.; Lu, W.; Li, Y. Automatic removal of the eye blink artifact from EEG using an ICA based template matching approach. Physiol. Meas. 2006, 27, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Flexer, A.; Bauer, H.; Pripfl, J.; Dorffner, G. Using ICA for removal of ocular artifacts in EEG recorded from blind subjects. Neural Netw. 2005, 18, 998–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ting, K.H.; Fung, P.C.W.; Chang, C.Q.; Chan, F.H.Y. Automatic correction of artifact from single trial event-related potentials by blind source separation using second order statistics only. Med. Eng. Phys. 2006, 28, 780–794. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Gotman, J. Automatic removal of eye movement artifacts from the EEG using ICA and the dipole model. Prog. Nat. Sci. 2009, 19, 1165–1170. [Google Scholar] [CrossRef]
- Frølich, L.; Dowding, I. Removal of muscular artifacts in EEG signals: A comparison of linear decomposition methods. Brain Inform. 2018, 5, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Jung, T.P.; Humphries, C.; Lee, T.W.; Makeig, S.; Mckeown, M.J.; Iragui, V.; Sejnowski, T.J. Extended ICA Removes Artifacts from Electroencephalographic Recordings. In Advances in Neural Information Processing Systems; MIT Press Ltd.: Denver, CO, USA, 1998. [Google Scholar]
- Vayá, C.; Rieta, J.J.; Sánchez, C.; Moratal, D. Convolutive blind source separation algorithms applied to the electrocardiogram of atrial fibrillation: Study of performance. IEEE Trans. Biomed. Eng. 2007, 54, 1530–1533. [Google Scholar] [CrossRef] [PubMed]
- Borga, M.; Friman, O.; Lundberg, P.; Knutsson, H. A Canonical Correlation Approach to Exploratory Data Analysis in fMRI. In Proceedings of the ISMRM 10th Scientific Meeting & Exhibition, Honolulu, HI, USA, 18–24 May 2002. [Google Scholar]
- Dong, L.; Zhang, Y.; Zhang, R.; Zhang, X.; Gong, D.; Valdes-Sosa, P.A.; Xu, P.; Luo, C.; Yao, D. Characterizing nonlinear relationships in functional imaging data using eigenspace maximal information canonical correlation analysis (emiCCA). Neuroimage 2015, 109, 388–401. [Google Scholar] [CrossRef] [PubMed]
- Clercq, W.D.; Vergult, A.; Vanrumste, B.; Paesschen, W.V.; Huffel, S.V. Canonical correlation analysis applied to remove muscle artifacts from the electroencephalogram. IEEE Trans. Biomed. Eng. 2006, 53, 2583–2587. [Google Scholar] [CrossRef] [PubMed]
- Vos, D.; Riècvs, S.; Vanderperren, K.; Vanrumste, B.; Alario, F.X.; Van, H.S. Removal of muscle artifacts from EEG recordings of spoken language production. Neuroinformatics 2010, 8, 135–150. [Google Scholar] [CrossRef] [PubMed]
- Kaiboriboon, K.; Hans, O.; Lüders, H.M.; Turnbull, J.; Lhatoo, S.D. EEG source imaging in epilepsy—Practicalities and pitfalls. Nat. Rev. Neurol. 2012, 8, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Gorodnitsky, I.F.; George, J.S.; Rao, B.D. Neuromagnetic source imaging with focuss: A recursive weighted minimum norm algorithm. Electroencephalogr. Clin. Neurophysiol. 1995, 95, 231–251. [Google Scholar] [CrossRef]
- Liu, T.; Yao, D. Removal of the ocular artifacts from EEG data using a cascaded spatio-temporal processing. Comput. Methods Programs Biomed. 2006, 83, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Yao, D. A method to standardize a reference of scalp EEG recordings to a point at infinity. Physiol. Meas. 2001, 22, 693–711. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Molla, M.K.I.; Islam, M.R.; Tanaka, T.; Rutkowski, T.M. Artifact suppression from EEG signals using data adaptive time domain filtering. Neurocomputing 2012, 97, 297–308. [Google Scholar] [CrossRef]
- Chavez, M.; Grosselin, F.; Bussalb, A.; Fallani, F.D.V.; Navarro-Sune, X. Surrogate-based artifact removal from single channel EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Zhang, T.; Zhang, Y.; Liu, W.; Wang, J.; Duan, K. Removal of electrooculogram artifacts from electroencephalogram using canonical correlation analysis with ensemble empirical mode decomposition. Cogn. Comput. 2017, 9, 626–633. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, P.; Li, P.; Duan, K.; Wen, Y.; Yang, Q.; Zhang, T.; Yao, D. Noise-assisted multivariate empirical mode decomposition for multichannel EMG signals. Biomed. Eng. Online 2017, 16, 107–123. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Chen, X.; Zhang, Y. Removal of muscle artefacts from few-channel EEG recordings based on multivariate empirical mode decomposition and independent vector analysis. Electron. Lett. 2018, 54, 866–868. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2011, 1, 1–41. [Google Scholar] [CrossRef]
- Mijovi, C.B.; Vos, M.D.; Gligorijevic, I.; Taelman, J.; Van Huffel, S. Source separation from single channel recordings by combining empirical mode decomposition and independent component analysis. IEEE Trans. Biomed. Eng. 2010, 57, 2188–2196. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, X.; Liu, A.; Mckeown, M.J.; Wang, Z.J. The use of multivariate EMD and CCA for denoising muscle artifacts from few-channel EEG recordings. IEEE Trans. Instrum. Meas. 2018, 67, 359–370. [Google Scholar] [CrossRef]
- He, P.; Wilson, G.; Russell, C.; Gerschutz, M. Removal of Ocular Artifacts from EEG: A Comparison of Adaptive Filtering Method and Regression Method Using Simulated Data. In Proceedings of the IEEE 27th Annual Conference on Engineering in Medicine and Biology, Shanghai, China, 17–18 January 2006. [Google Scholar]
- Marque, C.; Bisch, C.; Dantas, R.; Elayoubi, S.; Brosse, V.P.; Erot, C. Adaptive filtering for ECG rejection from surface EMG recordings. J. Electromyogr. Kinesiol. 2005, 15, 310–315. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Wilson, G.; Russell, C. Removal of ocular artifacts from electro-encephalogram by adaptive filtering. Med. Biol. Eng. Comput. 2004, 42, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Kher, R.; Gandhi, R. Adaptive Filtering Based Artifact Removal from Electroencephalogram (EEG) Signals. In Proceedings of the 2016 International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India, 6–8 April 2016. [Google Scholar]
- Somers, B.; Francart, T.; Bertrand, A. A generic EEG artifact removal algorithm based on the multi-channel Wiener filter. J. Neural Eng. 2018, 15. [Google Scholar] [CrossRef] [PubMed]
- Izzetoglu, M.; Devaraj, A.; Bunce, S.; Onaral, B. Motion artifact cancellation in NIR spectroscopy using Wiener filtering. IEEE Trans. Biomed. Eng. 2005, 52, 934–938. [Google Scholar] [CrossRef] [PubMed]
- Donoho, D.L. Sparse components of images and optimal atomic decompositions. Constr. Approx. 2001, 17, 353–382. [Google Scholar] [CrossRef]
- Silva, A.R.F.D. Atomic decomposition with evolutionary pursuit. Digit. Signal Process. 2003, 13, 317–337. [Google Scholar] [CrossRef]
- Mallat, S.G.; Zhang, Z. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 1993, 41, 3397–3415. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Yao, D. Two dictionaries matching pursuit for sparse decomposition of signals. Signal Process. 2006, 86, 3472–3480. [Google Scholar] [CrossRef]
- Li, P.; Xu, P.; Zhang, R.; Guo, L.; Yao, D. L1 Norm based common spatial patterns decomposition for scalp EEG BCI. Biomed. Eng. Online 2013, 12, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wang, X.; Li, F.; Zhang, R.; Ma, T.; Peng, Y.; Lei, X.; Tian, Y.; Guo, D.; Liu, T.; et al. Autoregressive model in the Lp norm space for EEG analysis. J. Neurosci. Methods 2014, 240, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Z.J.; Mckeown, M. Joint blind source separation for neurophysiological data analysis: Multiset and multimodal methods. IEEE Signal Process. Mag. 2016, 33, 86–107. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Q.; Zhang, Y.; Wang, Z.J. A novel EEMD-CCA approach to removing muscle artifacts for pervasive EEG. IEEE Sens. J. 2018, 99. [Google Scholar] [CrossRef]
- Chen, X.; He, C.; Peng, H. Removal of muscle artifacts from single-channel EEG based on ensemble empirical mode decomposition and multiset canonical correlation analysis. J. Appl. Math. 2014, 2014. [Google Scholar] [CrossRef]
- Sweeney, K.T.; McLoone, S.F.; Ward, T.E. The use of ensemble empirical mode decomposition with canonical correlation analysis as a novel artifact removal technique. IEEE Trans. Biomed. Eng. 2013, 60, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Teng, C.; Li, K.; Zhang, Z.; Yan, X. The removal of EOG artifacts from EEG signals using independent component analysis and multivariate empirical mode decomposition. IEEE J. Biomed. Health Inf. 2016, 20, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Soomro, M.H.; Badruddin, N.; Yusoff, M.Z.; Jatoi, M.A. Automatic Eye-blink Artifact Removal Method Based on EMD-CCA. In Proceedings of the 2013 ICME International Conference on Complex Medical Engineering, Beijing, China, 25–28 May 2013. [Google Scholar]
- Lin, J.; Zhang, A. Fault feature separation using wavelet-ICA filter. NDT E Int. 2005, 38, 421–427. [Google Scholar] [CrossRef]
- Azzerboni, B.; Carpentieri, M.; Foresta, F.L.; Morabito, F.C. Neural-ICA and Wavelet Transform for Artifacts Removal in Surface EMG. In Proceedings of the 2004 IEEE International Joint Conference on Neural Networks, Budapest, Hungary, 25–29 July 2004. [Google Scholar]
- Winkler, I.; Brandl, S.; Horn, F.; Waldburger, E.; Allefeld, C.; Tangermann, M. Robust artifactual independent component classification for BCI practitioners. J. Neural Eng. 2014, 11. [Google Scholar] [CrossRef] [PubMed]
- Calcagno, S.; Foresta, F.; Versaci, M. Independent component analysis and discrete wavelet transform for artifact removal in biomedical signal processing. Am. J. Appl. Sci. 2014, 11, 57–68. [Google Scholar] [CrossRef]
- Mammone, N.; Morabito, F. Enhanced automatic wavelet independent component analysis for electroencephalographic artifact removal. Entropy 2014, 16, 6553–6572. [Google Scholar] [CrossRef]
- Castellanos, N.P.; Makarov, V.A. Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis. J. Neurosci. Methods 2006, 158, 300–312. [Google Scholar] [CrossRef] [PubMed]
- Hamaneh, M.B.; Chitravas, N.; Kaiboriboon, K.; Lhatoo, S.D.; Loparo, K.A. Automated removal of EKG artifact from EEG data using independent component analysis and continuous wavelet transformation. IEEE Trans. Biomed. Eng. 2014, 61, 1634–1641. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, R.; Morshed, B.I. Unsupervised eye blink artifact denoising of EEG data with modified multiscale sample entropy, kurtosis, and wavelet-ICA. IEEE J. Biomed. Health Inform. 2015, 19, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Kevric, J.; Subasi, A. The effect of multiscale PCA de-noising in epileptic seizure detection. J. Med. Syst. 2014, 38, 131–289. [Google Scholar] [CrossRef] [PubMed]
- Kevric, J.; Subasi, A. The impact of Mspca signal de-noising in real-time wireless brain computer interface system. Southeast Eur. J. Soft Comput. 2015, 4, 43–47. [Google Scholar] [CrossRef]
- Alickovic, E.; Subasi, A. Ensemble SVM method for automatic sleep stage classification. IEEE Trans. Instrum. Meas. 2018, 67, 1258–1265. [Google Scholar] [CrossRef]
- Kevric, J.; Subasi, A. Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomed. Signal Process. Control 2017, 31, 398–406. [Google Scholar] [CrossRef]
- Shoker, L.; Sanei, S.; Chambers, J. Artifact removal from electroencephalograms using a hybrid BSS-SVM algorithm. IEEE Signal Process. Lett. 2005, 12, 721–724. [Google Scholar] [CrossRef] [Green Version]
- Halder, S.; Bensch, M.; Bogdan, M.; Birbaumer, N.; Rosenstiel, W. Online artifact removal for brain-computer interfaces using support vector machines and blind source separation. Comput. Intell. Neurosci. 2007, 2007. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, A.; Peng, H.; Ward, R. A preliminary study of muscular artifact cancellation in single-channel EEG. Sensors 2014, 14, 18370–18389. [Google Scholar] [CrossRef] [PubMed]
- Corradino, C.; Bucolo, M. Automatic preprocessing of EEG signals in long time scale. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015. [Google Scholar]
- Davies, M.E.; James, C.J. Source separation using single channel ICA. Signal Process. 2007, 87, 1819–1832. [Google Scholar] [CrossRef]
- Castro-Puyana, M.; García-Ruiz, C.; Cifuentes, A.; Crego, A.L.; Marina, M.L. A practical guide to the selection of independent components of the electroencephalogram for artifact correction. J. Neurosci. Methods 2015, 250, 47–63. [Google Scholar] [CrossRef]
- Daly, I.; Scherer, R.; Billinger, M.; Müller-Putz, G. FORCe: Fully online and automated artefact removal for brain-computer interfacing. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.D.; Lim, J.H.; Im, C.H. An unsupervised eye blink artefact detection method for real-time electroencephalogram processing. Physiol. Meas. 2016, 37, 401–417. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Nathan, V.; Jafari, R. Automatic identification of artefact-related independent components for artefact removal in EEG recordings. IEEE J. Biomed. Health Inform. 2016, 20, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Peng, H.; Yu, F.; Wang, K. Independent vector analysis applied to remove muscle artifacts in EEG data. IEEE Trans. Instrum. Meas. 2017, 66, 1770–1779. [Google Scholar] [CrossRef]
- Chen, X.; Liu, A.; Chen, Q.; Liu, Y.; Zou, L.; Mckeown, M.J. Simultaneous ocular and muscle artifact removal from EEG data by exploiting diverse statistics. Comput. Biol. Med. 2017, 88, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; McKeown, M.J.; Wang, Z.J.; Chen, X. Removal of high-voltage brain stimulation artifacts from simultaneous EEG recordings. IEEE Trans. Biomed. Eng. 2019, 66, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Dhindsa, K. Filter-bank artifact rejection: High performance real-time single-channel artifact detection for EEG. Biomed. Signal Process. Control 2017, 38, 224–235. [Google Scholar] [CrossRef]
- Mohammadpour, M.; Rahmani, V. A Hidden Markov Model-based approach to removing EEG artifact. Fuzzy Intell. Syst. IEEE 2017, 46–49. [Google Scholar] [CrossRef]
Band Name | Frequency (Hz) | Interpretation |
---|---|---|
Delta | <4 | Deep sleep |
Theta | 4–8 | Relaxed state and meditation |
Alpha | 8–13 | Relaxed state of consciousness |
Beta | 13–30 | active thinking |
Method | Additional Reference | Automatic | Online | Can Perform on Single Channel |
---|---|---|---|---|
Regression | Y | Y | N | N |
Wavelet | N | Y | N | Y |
ICA | N | N | Y | N |
CCA | N | N | Y | N |
Adaptive filter | Y | Y | Y | Y |
Winner filter | N | Y | N | Y |
Wavelet BSS | N | N | N | Y |
EMD BSS | N | N | N | Y |
BSS-SVM | N | Y | Y | N |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Bian, G.-B.; Tian, Z. Removal of Artifacts from EEG Signals: A Review. Sensors 2019, 19, 987. https://doi.org/10.3390/s19050987
Jiang X, Bian G-B, Tian Z. Removal of Artifacts from EEG Signals: A Review. Sensors. 2019; 19(5):987. https://doi.org/10.3390/s19050987
Chicago/Turabian StyleJiang, Xiao, Gui-Bin Bian, and Zean Tian. 2019. "Removal of Artifacts from EEG Signals: A Review" Sensors 19, no. 5: 987. https://doi.org/10.3390/s19050987
APA StyleJiang, X., Bian, G. -B., & Tian, Z. (2019). Removal of Artifacts from EEG Signals: A Review. Sensors, 19(5), 987. https://doi.org/10.3390/s19050987