Recent Advances in Surface Plasmon Resonance Imaging Sensors
Abstract
:1. Introduction
1.1. Brief History of Surface Plasmon Resonance
1.2. Operation Principle of SPR Biosensing
2. Optical Configurations of SPRi
2.1. Reflectivity-Based SPRi
2.2. Angle-Resolved SPRi
2.3. Spectral SPRi
2.4. Phase-Resolved SPRi
2.5. Polarization Contrast-Based SPRi
3. Recent Developments in SPRi Instrumentation
3.1. Solid-State Angle-Resolved SPRi
3.2. Microscope Objective-Based SPRi
3.3. Nanoparticle/Nanostructure-Based SPRi
3.4. Smartphone-Based SPRi
4. Biosensing Applications
4.1. Molecular Sensing
4.2. Live Cell Analysis
4.3. Healthcare Testing
4.4. Environmental Screening
5. Conclusions and Future Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- Wood, R.W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1902, 4, 396–402. [Google Scholar] [CrossRef]
- Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and Nuclei 1968, 216, 398–410. [Google Scholar] [CrossRef]
- Kretschmann, E. Determination of optical constants of metals by excitation of surface plasmon sensing. Sens. Actuators B Chem. 1996, 35, 212. [Google Scholar]
- Rothenhäusler, B.; Knoll, W. Surface–plasmon microscopy. Nature 1988, 332, 615. [Google Scholar] [CrossRef]
- Nelson, S.; Johnston, K.S.; Yee, S.S. High sensitivity surface plasmon resonace sensor based on phase detection. Sens. Actuators B Chem. 1996, 35, 187–191. [Google Scholar] [CrossRef]
- Kabashin, A.; Nikitin, P. Surface plasmon resonance interferometer for bio-and chemical-sensors. Opt. Commun. 1998, 150, 5–8. [Google Scholar] [CrossRef]
- Schasfoort, R.B. Handbook of Surface Plasmon Resonance; Royal Society of Chemistry: Cambridge, UK, 2017. [Google Scholar]
- Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef]
- Homola, J.; Yee, S.S.; Gauglitz, G. Surface plasmon resonance sensors. Sens. Actuators B Chem. 1999, 54, 3–15. [Google Scholar] [CrossRef]
- Smith, E.A.; Corn, R.M. Surface plasmon resonance imaging as a tool to monitor biomolecular interactions in an array based format. Appl. Spectrosc. 2003, 57, 320A–332A. [Google Scholar] [CrossRef]
- Raether, H. Surface plasmons on smooth surfaces. In Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer: Berlin, Germany, 1988; pp. 4–39. [Google Scholar]
- Steiner, G. Surface plasmon resonance imaging. Anal. Bioanal. Chem. 2004, 379, 328–331. [Google Scholar] [CrossRef]
- Boyer-Provera, E.; Rossi, A.; Oriol, L.; Dumontet, C.; Plesa, A.; Berguiga, L.; Elezgaray, J.; Arneodo, A.; Argoul, F. Wavelet-based decomposition of high resolution surface plasmon microscopy V (Z) curves at visible and near infrared wavelengths. Opt. Express 2013, 21, 7456–7477. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.L.; Olivo, M. Surface plasmon resonance imaging sensors: A review. Plasmonics 2014, 9, 809–824. [Google Scholar] [CrossRef]
- Homola, J.; Piliarik, M. Surface plasmon resonance (SPR) sensors. In Surface Plasmon Resonance Based Sensors; Springer: Berlin, Germany, 2006; pp. 45–67. [Google Scholar]
- Huang, Y.; Ho, H.P.; Kong, S.K.; Kabashin, A.V. Phase-sensitive surface plasmon resonance biosensors: Methodology, instrumentation and applications. Ann. Der Phys. 2012, 524, 637–662. [Google Scholar] [CrossRef]
- Shumaker-Parry, J.S.; Zareie, M.H.; Aebersold, R.; Campbell, C.T. Microspotting streptavidin and double-stranded DNA arrays on gold for high-throughput studies of protein- DNA interactions by surface plasmon resonance microscopy. Anal. Chem. 2004, 76, 918–929. [Google Scholar] [CrossRef]
- Shumaker-Parry, J.S.; Aebersold, R.; Campbell, C.T. Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy. Anal. Chem. 2004, 76, 2071–2082. [Google Scholar] [CrossRef] [PubMed]
- Jordan, C.E.; Frutos, A.G.; Thiel, A.J.; Corn, R.M.J.A.C. Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces. Anal. Chem. 1997, 69, 4939–4947. [Google Scholar] [CrossRef]
- Jordan, C.E.; Corn, R.M. Surface plasmon resonance imaging measurements of electrostatic biopolymer adsorption onto chemically modified gold surfaces. Anal. Chem. 1997, 69, 1449–1456. [Google Scholar] [CrossRef] [PubMed]
- Thiel, A.J.; Frutos, A.G.; Jordan, C.E.; Corn, R.M.; Smith, L.M. In situ surface plasmon resonance imaging detection of DNA hybridization to oligonucleotide arrays on gold surfaces. Anal. Chem. 1997, 69, 4948–4956. [Google Scholar] [CrossRef]
- Nelson, B.P.; Frutos, A.G.; Brockman, J.M.; Corn, R.M. Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments. Anal. Chem. 1999, 71, 3928–3934. [Google Scholar] [CrossRef]
- Wark, A.W.; Lee, H.J.; Corn, R.M. Long-range surface plasmon resonance imaging for bioaffinity sensors. Anal. Chem. 2005, 77, 3904–3907. [Google Scholar] [CrossRef] [PubMed]
- Fu, E.; Foley, J.; Yager, P. Wavelength-tunable surface plasmon resonance microscope. Rev. Sci. Instrum. 2003, 74, 3182–3184. [Google Scholar] [CrossRef]
- Fu, E.; Chinowsky, T.; Foley, J.; Weinstein, J.; Yager, P. Characterization of a wavelength-tunable surface plasmon resonance microscope. Rev. Sci. Instrum. 2004, 75, 2300–2304. [Google Scholar] [CrossRef]
- Shumaker-Parry, J.S.; Campbell, C.T. Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy. Anal. Chem. 2004, 76, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.A.; Erickson, M.G.; Ulijasz, A.T.; Weisblum, B.; Corn, R.M. Surface plasmon resonance imaging of transcription factor proteins: Interactions of bacterial response regulators with DNA arrays on gold films. J. Langmuir. 2003, 19, 1486–1492. [Google Scholar] [CrossRef]
- Piliarik, M.; Vaisocherová, H.; Homola, J. A new surface plasmon resonance sensor for high-throughput screening applications. Biosens. Bioelectron. 2005, 20, 2104–2110. [Google Scholar] [CrossRef] [PubMed]
- Yanase, Y.; Hiragun, T.; Kaneko, S.; Gould, H.J.; Greaves, M.W.; Hide, M. Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging. Biosens. Bioelectron. 2010, 26, 674–681. [Google Scholar] [CrossRef]
- Abadian, P.N.; Kelley, C.P.; Goluch, E.D. Cellular analysis and detection using surface plasmon resonance techniques. Anal. Chem. 2014, 86, 2799–2812. [Google Scholar] [CrossRef]
- Zeng, Y.; Hu, R.; Wang, L.; Gu, D.; He, J.; Wu, S.-Y.; Ho, H.-P.; Li, X.; Qu, J.; Gao, B.Z. Recent advances in surface plasmon resonance imaging: Detection speed, sensitivity, and portability. Nanophotonics 2017, 6, 1017–1030. [Google Scholar] [CrossRef]
- Wolf, L.K.; Fullenkamp, D.E.; Georgiadis, R.M. Quantitative angle-resolved SPR Imaging of DNA–DNA and DNA–Drug Kinetics. J. Am. Chem. Soc. 2005, 127, 17453–17459. [Google Scholar] [CrossRef]
- O’Brien II, M.J.; Pérez-Luna, V.c.H.; Brueck, S.; López, G.P. A surface plasmon resonance array biosensor based on spectroscopic imaging. Biosensors 2001, 16, 97–108. [Google Scholar] [CrossRef]
- Lokate, A.M.; Beusink, J.B.; Besselink, G.A.; Pruijn, G.J.; Schasfoort, R.B. Biomolecular interaction monitoring of autoantibodies by scanning surface plasmon resonance microarray imaging. J. Am. Chem. Soc. 2007, 129, 14013–14018. [Google Scholar] [CrossRef]
- Beusink, J.B.; Lokate, A.M.; Besselink, G.A.; Pruijn, G.J.; Schasfoort, R.B. Angle-scanning SPR imaging for detection of biomolecular interactions on microarrays. Biosens. Bioelectron. 2008, 23, 839–844. [Google Scholar] [CrossRef]
- Ruemmele, J.A.; Golden, M.S.; Gao, Y.; Cornelius, E.M.; Anderson, M.E.; Postelnicu, L.; Georgiadis, R.M. Quantitative surface plasmon resonance imaging: A simple approach to automated angle scanning. Anal. Chem. 2008, 80, 4752–4756. [Google Scholar] [CrossRef]
- Zhou, C.; Jin, W.; Zhang, Y.; Yang, M.; Xiang, L.; Wu, Z.; Jin, Q.; Mu, Y. An angle-scanning surface plasmon resonance imaging device for detection of mismatched bases in caspase-3 DNA. Anal. Methods 2013, 5, 2369–2373. [Google Scholar] [CrossRef]
- Liu, L.; Ma, S.; Ji, Y.; Chong, X.; Liu, Z.; He, Y.; Guo, J. A two-dimensional polarization interferometry based parallel scan angular surface plasmon resonance biosensor. Rev. Sci. Instrum. 2011, 82, 023109. [Google Scholar] [CrossRef]
- Fu, E.; Ramsey, S.; Thariani, R.; Yager, P. One-dimensional surface plasmon resonance imaging system using wavelength interrogation. Rev. Sci. Instrum. 2006, 77, 076106. [Google Scholar] [CrossRef]
- Yuk, J.S.; Kim, H.-S.; Jung, J.-W.; Jung, S.-H.; Lee, S.-J.; Kim, W.J.; Han, J.-A.; Kim, Y.-M.; Ha, K.-S. Analysis of protein interactions on protein arrays by a novel spectral surface plasmon resonance imaging. Biosens. Bioelectron. 2006, 21, 1521–1528. [Google Scholar] [CrossRef]
- Liu, L.; He, Y.; Zhang, Y.; Ma, S.; Ma, H.; Guo, J. Parallel scan spectral surface plasmon resonance imaging. Appl. Opt. 2008, 47, 5616–5621. [Google Scholar] [CrossRef]
- Sereda, A.; Moreau, J.; Canva, M.; Maillart, E. High performance multi-spectral interrogation for surface plasmon resonance imaging sensors. Biosens. Bioelectron. 2014, 54, 175–180. [Google Scholar] [CrossRef]
- Chen, K.; Zeng, Y.; Wang, L.; Gu, D.; He, J.; Wu, S.-Y.; Ho, H.-P.; Li, X.; Qu, J.; Gao, B.Z. Fast spectral surface plasmon resonance imaging sensor for real-time high-throughput detection of biomolecular interactions. J. Biomed. Opt. 2016, 21, 127003. [Google Scholar] [CrossRef]
- Zeng, Y.; Wang, L.; Wu, S.-Y.; He, J.; Qu, J.; Li, X.; Ho, H.-P.; Gu, D.; Gao, B.Z.; Shao, Y. High-throughput imaging surface plasmon resonance biosensing based on an adaptive spectral-dip tracking scheme. Opt. Express 2016, 24, 28303–28311. [Google Scholar] [CrossRef]
- Lee, S.H.; Lindquist, N.C.; Wittenberg, N.J.; Jordan, L.R.; Oh, S.-H. Real-time full-spectral imaging and affinity measurements from 50 microfluidic channels using nanohole surface plasmon resonance. Lab Chip 2012, 12, 3882–3890. [Google Scholar] [CrossRef]
- Nikitin, P.; Grigorenko, A.; Beloglazov, A.; Valeiko, M.; Savchuk, A.; Savchuk, O.; Steiner, G.; Kuhne, C.; Huebner, A.; Salzer, R. Surface plasmon resonance interferometry for micro-array biosensing. Sens. Actuators A Phys. 2000, 85, 189–193. [Google Scholar] [CrossRef]
- Su, Y.-D.; Chen, S.-J.; Yeh, T.-L. Common-path phase-shift interferometry surface plasmon resonance imaging system. Opt. Lett. 2005, 30, 1488–1490. [Google Scholar] [CrossRef]
- Chen, S.-J.; Su, Y.-D.; Hsiu, F.-M.; Tsou, C.-Y.; Chen, Y.-K. Surface plasmon resonance phase-shift interferometry: Real-time DNA microarray hybridization analysis. J. Biomed. Opt. 2005, 10, 034005. [Google Scholar] [CrossRef]
- Yu, X.; Wang, D.; Wei, X.; Ding, X.; Wei, L.; Zhao, X. A surface plasmon resonance imaging interferometry for protein micro-array detection. Sens. Actuators B Chem. 2005, 108, 765–771. [Google Scholar]
- Yu, X.; Ding, X.; Liu, F.; Wei, X.; Wang, D. A surface plasmon resonance interferometer based on spatial phase modulation for protein array detection. Meas. Sci. Technol. 2007, 19, 015301. [Google Scholar] [CrossRef]
- Yu, X.; Ding, X.; Liu, F.; Deng, Y. A novel surface plasmon resonance imaging interferometry for protein array detection. Sens. Actuators B Chem. 2008, 130, 52–58. [Google Scholar] [CrossRef]
- Wang, D.; Ding, L.; Zhang, W.; Luo, Z.; Ou, H.; Zhang, E.; Yu, X. A high-throughput surface plasmon resonance biosensor based on differential interferometric imaging. Meas. Sci. Technol. 2012, 23, 065701. [Google Scholar] [CrossRef]
- Shao, Y.; Li, Y.; Gu, D.; Zhang, K.; Qu, J.; He, J.; Li, X.; Wu, S.-Y.; Ho, H.-P.; Somekh, M.G. Wavelength-multiplexing phase-sensitive surface plasmon imaging sensor. Opt. Lett. 2013, 38, 1370–1372. [Google Scholar] [CrossRef]
- Wong, C.; Ho, H.; Yu, T.; Suen, Y.; Chow, W.W.; Wu, S.; Law, W.; Yuan, W.; Li, W.; Kong, S. Two-dimensional biosensor arrays based on surface plasmon resonance phase imaging. Appl. Opt. 2007, 46, 2325–2332. [Google Scholar] [CrossRef]
- Wong, C.; Ho, H.; Suen, Y.; Kong, S.; Chen, Q.; Yuan, W.; Wu, S. Real-time protein biosensor arrays based on surface plasmon resonance differential phase imaging. Biosens. Bioelectron. 2008, 24, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Piliarik, M.; Katainen, J.; Homola, J. Novel polarization control for high-throughput surface plasmon resonance sensors. SPIE 2007, 6585, 658515. [Google Scholar] [CrossRef]
- Piliarik, M.; Homola, J. Self-referencing SPR imaging for most demanding high-throughput screening applications. Sens. Actuators B Chem. 2008, 134, 353–355. [Google Scholar] [CrossRef]
- Patskovsky, S.; Jacquemart, R.; Meunier, M.; De Crescenzo, G.; Kabashin, A.V. Phase-sensitive spatially-modulated surface plasmon resonance polarimetry for detection of biomolecular interactions. Sens. Actuators B Chem. 2008, 133, 628–631. [Google Scholar] [CrossRef]
- Han, C.-Y.; Luo, C.-W. An ellipsometric surface plasmon resonance system for quantitatively determining the normal of a sensor surface and multi-channel measurement. Opt. Commun. 2013, 294, 8–12. [Google Scholar] [CrossRef]
- VanWiggeren, G.D.; Bynum, M.A.; Ertel, J.P.; Jefferson, S.; Robotti, K.M.; Thrush, E.P.; Baney, D.M.; Killeen, K.P. A novel optical method providing for high-sensitivity and high-throughput biomolecular interaction analysis. Sens. Actuators B Chem. 2007, 127, 341–349. [Google Scholar] [CrossRef]
- Wong, C.L.; Chen, G.C.K.; Ng, B.K.; Agarwal, S.; Lin, Z.; Chen, P.; Ho, H.P. Multiplex spectral surface plasmon resonance imaging (SPRI) sensor based on the polarization control scheme. Opt. Express 2011, 19, 18965–18978. [Google Scholar] [CrossRef]
- Wong, C.L.; Chen, G.C.K.; Li, X.; Ng, B.K.; Shum, P.; Chen, P.; Lin, Z.; Lin, C.; Olivo, M.J. Colorimetric surface plasmon resonance imaging (SPRI) biosensor array based on polarization orientation. Biosens. Bioelectron. 2013, 47, 545–552. [Google Scholar] [CrossRef]
- Wong, C.L.; Chua, M.; Mittman, H.; Choo, L.X.; Lim, H.Q.; Olivo, M. A Phase-Intensity Surface Plasmon Resonance Biosensor for Avian Influenza A (H5N1) Detection. Sensors 2017, 17, 2363. [Google Scholar] [CrossRef]
- Campbell, C.T.; Kim, G. SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials 2007, 28, 2380–2392. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Hu, F.; Yang, W.; Xu, J.; Chen, Y. A critical review of advances in surface plasmon resonance imaging sensitivity. TrAC Trends Anal. Chem. 2017, 97, 354–362. [Google Scholar] [CrossRef]
- Liedberg, B.; Nylander, C.; Lunström, I. Surface plasmon resonance for gas detection and biosensing. Sensors 1983, 4, 299–304. [Google Scholar] [CrossRef]
- Zeng, Y.; Wang, L.; Wu, S.-Y.; He, J.; Qu, J.; Li, X.; Ho, H.-P.; Gu, D.; Gao, B.Z.; Shao, Y. Wavelength-scanning SPR imaging sensors based on an acousto-optic tunable filter and a white light laser. Sensors 2017, 17, 90. [Google Scholar] [CrossRef] [PubMed]
- Bak, S.; Kim, G.H.; Jang, H.; Kim, J.; Lee, J.; Kim, C.-S. Real-time SPR imaging based on a large area beam from a wavelength-swept laser. Opt. Lett. 2018, 43, 5476–5479. [Google Scholar] [CrossRef]
- Huang, Y.; Ho, H.; Wu, S.; Kong, S. Detecting phase shifts in surface plasmon resonance: A review. Adv. Opt. Technol. 2012, 2012. [Google Scholar] [CrossRef]
- Ng, S.P.; Loo, F.C.; Wu, S.Y.; Kong, S.K.; Wu, C.M.L.; Ho, H.P. Common-path spectral interferometry with temporal carrier for highly sensitive surface plasmon resonance sensing. Opt. Express 2013, 21, 20268–20273. [Google Scholar] [CrossRef] [PubMed]
- Kruchinin, A.; Vlasov, Y.G. Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA-probe biosensor. Sens. Actuators B Chem. 1996, 30, 77–80. [Google Scholar] [CrossRef]
- Kabashin, A.; Kochergin, V.; Beloglazov, A.; Nikitin, P. Phase-polarisation contrast for surface plasmon resonance biosensors1. Biosensors 1998, 13, 1263–1269. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, L.; He, Y.; Shen, Z.; Guo, J.; Ji, Y.; Ma, H. Non-scan and real-time multichannel angular surface plasmon resonance imaging method. Appl. Opt. 2014, 53, 6037–6042. [Google Scholar] [CrossRef]
- Wang, D.; Loo, F.-C.; Cong, H.; Lin, W.; Kong, S.K.; Yam, Y.; Chen, S.-C.; Ho, H.P. Real-time multi-channel SPR sensing based on DMD-enabled angular interrogation. Opt. Express 2018, 26, 24627–24636. [Google Scholar] [CrossRef]
- Huang, B.; Yu, F.; Zare, R.N. Surface plasmon resonance imaging using a high numerical aperture microscope objective. Anal. Chem. 2007, 79, 2979–2983. [Google Scholar] [CrossRef]
- Jamil, M.M.A.; Denyer, M.C.; Youseffi, M.; Britland, S.T.; Liu, S.; See, C.; Somekh, M.; Zhang, J. Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy. J. Struct. Biol. 2008, 164, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Sefat, F.; Denyer, M.; Youseffi, M. Imaging via widefield surface plasmon resonance microscope for studying bone cell interactions with micropatterned ECM proteins. J. Microsc. 2011, 241, 282–290. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.; Park, J.; Kang, S.; Kim, M. Surface plasmon resonance: A versatile technique for biosensor applications. Sensors 2015, 15, 10481–10510. [Google Scholar] [CrossRef]
- Peterson, A.W.; Halter, M.; Tona, A.; Plant, A.L. High resolution surface plasmon resonance imaging for single cells. BMC Cell Biol. 2014, 15, 35. [Google Scholar] [CrossRef]
- Peterson, A.W.; Halter, M.; Plant, A.L.; Elliott, J.T. Surface plasmon resonance microscopy: Achieving a quantitative optical response. Rev. Sci. Instrum. 2016, 87, 093703. [Google Scholar] [CrossRef]
- Mariani, S.; Ermini, M.L.; Scarano, S.; Bellissima, F.; Bonini, M.; Berti, D.; Minunni, M. Improving surface plasmon resonance imaging of DNA by creating new gold and silver based surface nanostructures. Microchim. Acta 2013, 180, 1093–1099. [Google Scholar] [CrossRef]
- Jung, J.; Na, K.; Lee, J.; Kim, K.-W.; Hyun, J. Enhanced surface plasmon resonance by Au nanoparticles immobilized on a dielectric SiO2 layer on a gold surface. Anal. Chim. Acta 2009, 651, 91–97. [Google Scholar] [CrossRef]
- Sendroiu, I.E.; Gifford, L.K.; Lupták, A.; Corn, R.M. Ultrasensitive DNA microarray biosensing via in situ RNA transcription-based amplification and nanoparticle-enhanced SPR imaging. J. Am. Chem. Soc. 2011, 133, 4271–4273. [Google Scholar] [CrossRef]
- Hong, X.; Hall, E.A. Contribution of gold nanoparticles to the signal amplification in surface plasmon resonance. Analyst 2012, 137, 4712–4719. [Google Scholar] [CrossRef]
- Lyon, L.A.; Musick, M.D.; Natan, M.J. Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal. Chem. 1998, 70, 5177–5183. [Google Scholar] [CrossRef]
- Melaine, F.; Saad, M.; Faucher, S.; Tabrizian, M. Selective and high dynamic range assay format for multiplex detection of pathogenic Pseudomonas aeruginosa, Salmonella typhimurium, and Legionella pneumophila RNAs using surface plasmon resonance imaging. Anal. Chem. 2017, 89, 7802–7807. [Google Scholar] [CrossRef]
- Kwon, M.J.; Lee, J.; Wark, A.W.; Lee, H.J. Nanoparticle-enhanced surface plasmon resonance detection of proteins at attomolar concentrations: Comparing different nanoparticle shapes and sizes. Anal. Chem. 2012, 84, 1702–1707. [Google Scholar] [CrossRef]
- Lin, K.; Lu, Y.; Chen, J.; Zheng, R.; Wang, P.; Ming, H. Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity. Opt. Express 2008, 16, 18599–18604. [Google Scholar] [CrossRef]
- Beccati, D.; Halkes, K.M.; Batema, G.D.; Guillena, G.; Carvalho de Souza, A.; van Koten, G.; Kamerling, J.P. SPR Studies of Carbohydrate–Protein Interactions: Signal Enhancement of Low-Molecular-Mass Analytes by Organoplatinum (II)-Labeling. ChemBioChem 2005, 6, 1196–1203. [Google Scholar] [CrossRef]
- Luckarift, H.R.; Balasubramanian, S.; Paliwal, S.; Johnson, G.R.; Simonian, A.L. Enzyme-encapsulated silica monolayers for rapid functionalization of a gold surface. Colloids Surf. B Biointerfaces 2007, 58, 28–33. [Google Scholar] [CrossRef]
- Zhou, W.-J.; Chen, Y.; Corn, R.M. Ultrasensitive microarray detection of short RNA sequences with enzymatically modified nanoparticles and surface plasmon resonance imaging measurements. Anal. Chem. 2011, 83, 3897–3902. [Google Scholar] [CrossRef]
- Soelberg, S.D.; Stevens, R.C.; Limaye, A.P.; Furlong, C.E. Surface plasmon resonance detection using antibody-linked magnetic nanoparticles for analyte capture, purification, concentration, and signal amplification. Anal. Chem. 2009, 81, 2357–2363. [Google Scholar] [CrossRef]
- Rocha-Santos, T.A. Sensors and biosensors based on magnetic nanoparticles. TrAC Trends Anal. Chem. 2014, 62, 28–36. [Google Scholar] [CrossRef]
- Anderson, G.P.; Glaven, R.H.; Algar, W.R.; Susumu, K.; Stewart, M.H.; Medintz, I.L.; Goldman, E.R. Single domain antibody–quantum dot conjugates for ricin detection by both fluoroimmunoassay and surface plasmon resonance. Anal. Chim. Acta 2013, 786, 132–138. [Google Scholar] [CrossRef]
- Vance, S.A.; Sandros, M.G. Zeptomole detection of C-reactive protein in serum by a nanoparticle amplified surface plasmon resonance imaging aptasensor. Sci. Rep. 2014, 4, 5129. [Google Scholar] [CrossRef]
- Zeidan, E.; Li, S.; Zhou, Z.; Miller, J.; Sandros, M.G. Single-multiplex detection of organ injury biomarkers using SPRi based nano-immunosensor. Sci. Rep. 2016, 6, srep36348. [Google Scholar] [CrossRef]
- Wu, L.; Chu, H.; Koh, W.; Li, E. Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 2010, 18, 14395–14400. [Google Scholar] [CrossRef]
- Chen, Y.; Tan, C.; Zhang, H.; Wang, L. Two-dimensional graphene analogues for biomedical applications. Chem. Soc. Rev. 2015, 44, 2681–2701. [Google Scholar] [CrossRef]
- Choi, S.H.; Kim, Y.L.; Byun, K.M. Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors. Opt. Express 2011, 19, 458–466. [Google Scholar] [CrossRef]
- Zeng, S.; Sreekanth, K.V.; Shang, J.; Yu, T.; Chen, C.K.; Yin, F.; Baillargeat, D.; Coquet, P.; Ho, H.P.; Kabashin, A.V. Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing. Adv. Mater. 2015, 27, 6163–6169. [Google Scholar] [CrossRef]
- Maurer, T.; Nicolas, R.; Lévêque, G.; Subramanian, P.; Proust, J.; Béal, J.; Schuermans, S.; Vilcot, J.-P.; Herro, Z.; Kazan, M. Enhancing LSPR sensitivity of Au gratings through graphene coupling to Au film. Plasmonics 2014, 9, 507–512. [Google Scholar] [CrossRef]
- Im, H.; Sutherland, J.N.; Maynard, J.A.; Oh, S.-H. Nanohole-based surface plasmon resonance instruments with improved spectral resolution quantify a broad range of antibody-ligand binding kinetics. Anal. Chem. 2012, 84, 1941–1947. [Google Scholar] [CrossRef]
- Im, H.; Lee, S.H.; Wittenberg, N.J.; Johnson, T.W.; Lindquist, N.C.; Nagpal, P.; Norris, D.J.; Oh, S.-H. Template-stripped smooth Ag nanohole arrays with silica shells for surface plasmon resonance biosensing. ACS Nano 2011, 5, 6244–6253. [Google Scholar] [CrossRef]
- Lee, K.-L.; Chen, P.-W.; Wu, S.-H.; Huang, J.-B.; Yang, S.-Y.; Wei, P.-K. Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films. ACS Nano 2012, 6, 2931–2939. [Google Scholar] [CrossRef]
- Mousavi, M.Z.; Chen, H.-Y.; Lee, K.-L.; Lin, H.; Chen, H.-H.; Lin, Y.-F.; Wong, C.-S.; Li, H.F.; Wei, P.-K.; Cheng, J.-Y. Urinary micro-RNA biomarker detection using capped gold nanoslit SPR in a microfluidic chip. Analyst 2015, 140, 4097–4104. [Google Scholar] [CrossRef]
- Lee, K.-L.; Huang, J.-B.; Chang, J.-W.; Wu, S.-H.; Wei, P.-K. Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays. Sci. Rep. 2015, 5, 8547. [Google Scholar] [CrossRef]
- Dou, X.; Lin, Y.-C.; Choi, B.; Wu, K.; Jiang, P. Sensitive surface plasmon resonance enabled by templated periodic arrays of gold nanodonuts. Nanotechnology 2016, 27, 195601. [Google Scholar] [CrossRef] [Green Version]
- Toma, M.; Cho, K.; Wood, J.B.; Corn, R.M. Gold nanoring arrays for near infrared plasmonic biosensing. Plasmonics 2014, 9, 765–772. [Google Scholar] [CrossRef]
- Kim, K.; Choi, J.W.; Ma, K.; Lee, R.; Yoo, K.H.; Yun, C.O.; Kim, D. Nanoisland-Based Random Activation of Fluorescence for Visualizing Endocytotic Internalization of Adenovirus. Small 2010, 6, 1293–1299. [Google Scholar] [CrossRef]
- Oh, Y.; Son, T.; Kim, S.Y.; Lee, W.; Yang, H.; Choi, J.-R.; Shin, J.-S.; Kim, D. Surface plasmon-enhanced nanoscopy of intracellular cytoskeletal actin filaments using random nanodot arrays. Opt. Express 2014, 22, 27695–27706. [Google Scholar] [CrossRef]
- Yang, H.; Lee, W.; Hwang, T.; Kim, D. Probabilistic evaluation of surface-enhanced localized surface plasmon resonance biosensing. Opt. Express 2014, 22, 28412–28426. [Google Scholar] [CrossRef]
- Son, T.; Lee, W.; Kim, D. Localized surface plasmon enhanced cellular imaging using random metallic structures. Proc. SPIE 2017, 10080. [Google Scholar] [CrossRef]
- Aristov, A.I.; Manousidaki, M.; Danilov, A.; Terzaki, K.; Fotakis, C.; Farsari, M.; Kabashin, A.V. 3D plasmonic crystal metamaterials for ultra-sensitive biosensing. Sci. Rep. 2016, 6, 25380. [Google Scholar] [CrossRef] [Green Version]
- Lopez, G.A.; Estevez, M.-C.; Soler, M.; Lechuga, L.M. Recent advances in nanoplasmonic biosensors: Applications and lab-on-a-chip integration. Nanophotonics 2017, 6, 123. [Google Scholar] [CrossRef]
- Wang, D.-S.; Fan, S.-K. Microfluidic surface plasmon resonance sensors: From principles to point-of-care applications. Sensors 2016, 16, 1175. [Google Scholar] [CrossRef] [PubMed]
- Schasfoort, R.B.; Schuck, P. Future trends in SPR technology. In Handbook of Surface Plasmon Resonance; RSC Publishing: Cambridge, UK, 2008; pp. 354–394. [Google Scholar]
- Lertvachirapaiboon, C.; Baba, A.; Shinbo, K.; Kato, K. A smartphone-based surface plasmon resonance platform. Anal. Methods 2018, 10, 4732–4740. [Google Scholar] [CrossRef]
- Preechaburana, P.; Gonzalez, M.C.; Suska, A.; Filippini, D. Surface plasmon resonance chemical sensing on cell phones. Angew. Chem. 2012, 124, 11753–11756. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Q.; Chen, S.; Cheng, F.; Wang, H.; Peng, W. Surface plasmon resonance biosensor based on smart phone platforms. Sci. Rep. 2015, 5, 12864. [Google Scholar] [CrossRef]
- Bremer, K.; Roth, B. Fibre optic surface plasmon resonance sensor system designed for smartphones. Opt. Express 2015, 23, 17179–17184. [Google Scholar] [CrossRef]
- Roche, P.J.; Filion-Côté, S.; Cheung, M.C.-K.; Chodavarapu, V.P.; Kirk, A.G. A camera phone localised surface plasmon biosensing platform towards low-cost label-free diagnostic testing. J. Sens. 2011, 2011, 406425. [Google Scholar] [CrossRef]
- Dutta, S.; Saikia, K.; Nath, P. Smartphone based LSPR sensing platform for bio-conjugation detection and quantification. RSC Adv. 2016, 6, 21871–21880. [Google Scholar] [CrossRef]
- Wang, X.; Chang, T.-W.; Lin, G.; Gartia, M.R.; Liu, G.L. Self-referenced smartphone-based nanoplasmonic imaging platform for colorimetric biochemical sensing. Anal. Chem. 2016, 89, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Guner, H.; Ozgur, E.; Kokturk, G.; Celik, M.; Esen, E.; Topal, A.E.; Ayas, S.; Uludag, Y.; Elbuken, C.; Dana, A. A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection. Sens. Actuators B Chem. 2017, 239, 571–577. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Huang, X.; Cheng, Z. Automatic Spot Identification Method for High Throughput Surface Plasmon Resonance Imaging Analysis. Biosensors 2018, 8, 85. [Google Scholar] [CrossRef] [PubMed]
- Sankiewicz, A.; Romanowicz, L.; Pyc, M.; Hermanowicz, A.; Gorodkiewicz, E. SPR imaging biosensor for the quantitation of fibronectin concentration in blood samples. J. Pharm. Biomed. Anal. 2018, 150, 1–8. [Google Scholar] [CrossRef]
- Loo, F.-C.; Ng, S.-P.; Wu, C.-M.L.; Kong, S.K. An aptasensor using DNA aptamer and white light common-path SPR spectral interferometry to detect cytochrome-c for anti-cancer drug screening. Sens. Actuators B Chem. 2014, 198, 416–423. [Google Scholar] [CrossRef]
- Stojanović, I.; van Hal, Y.; van der Velden, T.J.; Schasfoort, R.B.; Terstappen, L.W. Detection of apoptosis in cancer cell lines using Surface Plasmon Resonance imaging. Sens. Bio Sens. Res. 2016, 7, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Stojanović, I.; van der Velden, T.J.; Mulder, H.W.; Schasfoort, R.B.; Terstappen, L.W. Quantification of antibody production of individual hybridoma cells by surface plasmon resonance imaging. Anal. Biochem. 2015, 485, 112–118. [Google Scholar] [CrossRef]
- Piliarik, M.; Vaisocherová, H.; Homola, J. Towards parallelized surface plasmon resonance sensor platform for sensitive detection of oligonucleotides. Sens. Actuators B Chem. 2007, 121, 187–193. [Google Scholar] [CrossRef]
- Nelson, B.P.; Grimsrud, T.E.; Liles, M.R.; Goodman, R.M.; Corn, R.M. Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal. Chem. 2001, 73, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Lu, Z.; Yang, H.; Li, H.; Xu, D. Elimination terminal fixed region screening and high-throughput kinetic determination of aptamer for lipocalin-1 by surface plasmon resonance imaging. Anal. Chim. Acta 2018, 1043, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Geuijen, K.P.; van Wijk-Basten, D.E.; Egging, D.F.; Schasfoort, R.B.; Eppink, M.H. Rapid buffer and ligand screening for affinity chromatography by multiplexed Surface Plasmon Resonance imaging. Biotechnol. J. 2017, 12, 1700154. [Google Scholar] [CrossRef]
- Kim, S.; Zbaida, D.; Elbaum, M.; Leh, H.; Nogues, C.; Buckle, M. Surface plasmon resonance imaging reveals multiple binding modes of Agrobacterium transformation mediator VirE2 to ssDNA. Nucleic Acids Res. 2015, 43, 6579–6586. [Google Scholar] [CrossRef] [Green Version]
- Cairns, T.M.; Ditto, N.T.; Lou, H.; Brooks, B.D.; Atanasiu, D.; Eisenberg, R.J.; Cohen, G.H. Global sensing of the antigenic structure of herpes simplex virus gD using high-throughput array-based SPR imaging. PLoS Pathog. 2017, 13, e1006430. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Yang, M.; Zhou, W.; Zhang, B.; Cheng, Z.; Huang, J.; Zhang, M.; Wang, Z.; Wang, R.; Chen, Z. Kinetic and high-throughput profiling of epigenetic interactions by 3D-carbene chip-based surface plasmon resonance imaging technology. Proc. Natl. Acad. Sci. USA 2017, 114, E7245–E7254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, Y.; Lee, W.; Son, T.; Kim, S.Y.; Shin, J.-S.; Kim, D. Live cell imaging based on surface plasmon-enhanced fluorescence microscopy using random nanostructures. In Proceedings of the Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XI, San Francisco, CA, USA, 3–6 February 2014; p. 89540E. [Google Scholar]
- Son, T.; Oh, Y.; Lee, W.; Yang, H.; Kim, D. Surface-plasmon enhanced microscopy using blocked silver nanodot arrays. In Proceedings of the Opto-Electronics and Communications Conference (OECC), Shanghai, China, 28 June–2 July 2015; pp. 1–3. [Google Scholar]
- Peterson, A.W.; Halter, M.; Tona, A.; Plant, A.L.; Elliott, J.T. Mass measurements of focal adhesions in single cells using high resolution surface plasmon resonance microscopy. In Proceedings of the Plasmonics in Biology and Medicine XV, San Francisco, CA, USA, 27 January–1 February 2018; p. 1050905. [Google Scholar]
- Berguiga, L.; Streppa, L.; Boyer-Provera, E.; Martinez-Torres, C.; Schaeffer, L.; Elezgaray, J.; Arneodo, A.; Argoul, F. Time-lapse scanning surface plasmon microscopy of living adherent cells with a radially polarized beam. Appl. Opt. 2016, 55, 1216–1227. [Google Scholar] [CrossRef] [PubMed]
- Abadian, P.N.; Tandogan, N.; Jamieson, J.J.; Goluch, E.D. Using surface plasmon resonance imaging to study bacterial biofilms. Biomicrofluidics 2014, 8, 021804. [Google Scholar] [CrossRef]
- Son, T.; Seo, J.; Choi, I.-H.; Kim, D. Label-free quantification of cell-to-substrate separation by surface plasmon resonance microscopy. Opt. Commun. 2018, 422, 64–68. [Google Scholar] [CrossRef]
- Peterson, A.W.; Halter, M.; Tona, A.; Bhadriraju, K.; Plant, A.L. Surface plasmon resonance imaging of cells and surface-associated fibronectin. BMC Cell Biol. 2009, 10, 16. [Google Scholar] [CrossRef]
- Schasfoort, R.B.; Bentlage, A.E.; Stojanovic, I.; van der Kooi, A.; van der Schoot, E.; Terstappen, L.W.; Vidarsson, G. Label-free cell profiling. Anal. Biochem. 2013, 439, 4–6. [Google Scholar] [CrossRef]
- Schasfoort, R.; Abali, F.; Stojanovic, I.; Vidarsson, G.; Terstappen, L. Trends in SPR Cytometry: Advances in Label-Free Detection of Cell Parameters. Biosensors 2018, 8, 102. [Google Scholar] [CrossRef]
- Nonobe, Y.; Yokoyama, T.; Kamikubo, Y.; Yoshida, S.; Hisajima, N.; Shinohara, H.; Shiraishi, Y.; Sakurai, T.; Tabata, T. Application of surface plasmon resonance imaging to monitoring G protein-coupled receptor signaling and its modulation in a heterologous expression system. BMC Biotechnol. 2016, 16, 36. [Google Scholar] [CrossRef]
- Castiello, F.R.; Tabrizian, M. Multiplex Surface Plasmon Resonance Imaging-Based Biosensor for Human Pancreatic Islets Hormones Quantification. Anal. Chem. 2018, 90, 3132–3139. [Google Scholar] [CrossRef]
- Halpern, A.R.; Chen, Y.; Corn, R.M.; Kim, D. Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays. Anal. Chem. 2011, 83, 2801–2806. [Google Scholar] [CrossRef]
- Loo, J.F.; Wang, S.; Peng, F.; He, J.; He, L.; Guo, Y.; Gu, D.; Kwok, H.; Wu, S.; Ho, H. A non-PCR SPR platform using RNase H to detect MicroRNA 29a-3p from throat swabs of human subjects with influenza A virus H1N1 infection. Analyst 2015, 140, 4566–4575. [Google Scholar] [CrossRef]
- Shen, M.; Joshi, A.A.; Vannam, R.; Dixit, C.K.; Hamilton, R.G.; Kumar, C.V.; Rusling, J.F.; Peczuh, M.W. Epitope-Resolved Detection of Peanut-Specific IgE Antibodies by Surface Plasmon Resonance Imaging. ChemBioChem 2018, 19, 199–202. [Google Scholar] [CrossRef]
- Yanik, A.A.; Huang, M.; Kamohara, O.; Artar, A.; Geisbert, T.W.; Connor, J.H.; Altug, H. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett. 2010, 10, 4962–4969. [Google Scholar] [CrossRef]
- Sankiewicz, A.; Lukaszewski, Z.; Trojanowska, K.; Gorodkiewicz, E. Determination of collagen type IV by Surface Plasmon Resonance Imaging using a specific biosensor. Anal. Biochem. 2016, 515, 40–46. [Google Scholar] [CrossRef]
- Pipatpanukul, C.; Takeya, S.; Baba, A.; Amarit, R.; Somboonkaew, A.; Sutapun, B.; Kitpoka, P.; Kunakorn, M.; Srikhirin, T. Rh blood phenotyping (D, E, e, C, c) microarrays using multichannel surface plasmon resonance imaging. Biosens. Bioelectron. 2018, 102, 267–275. [Google Scholar] [CrossRef]
- Szittner, Z.; Bentlage, A.E.; van der Donk, E.; Ligthart, P.C.; Lissenberg-Thunnissen, S.; van der Schoot, C.E.; Vidarsson, G. Multiplex blood group typing by cellular surface plasmon resonance imaging. Transfusion 2018. [Google Scholar] [CrossRef]
- Grasso, G.; Bush, A.I.; D’Agata, R.; Rizzarelli, E.; Spoto, G. Enzyme solid-state support assays: A surface plasmon resonance and mass spectrometry coupled study of immobilized insulin degrading enzyme. Eur. Biophys. J. 2009, 38, 407. [Google Scholar] [CrossRef]
- Joshi, S.; Annida, R.M.; Zuilhof, H.; van Beek, T.A.; Nielen, M.W. Analysis of mycotoxins in beer using a portable nanostructured imaging surface plasmon resonance biosensor. J. Agric. 2016, 64, 8263–8271. [Google Scholar] [CrossRef]
- Hossain, M.Z.; McCormick, S.P.; Maragos, C.M. An Imaging Surface Plasmon Resonance Biosensor Assay for the Detection of T-2 Toxin and Masked T-2 Toxin-3-Glucoside in Wheat. Toxins 2018, 10, 119. [Google Scholar] [CrossRef]
- Nizamov, S.; Scherbahn, V.; Mirsky, V.M. Detection and quantification of single engineered nanoparticles in complex samples using template matching in wide-field surface plasmon microscopy. Anal. Chem. 2016, 88, 10206–10214. [Google Scholar] [CrossRef]
- Chen, J.; Park, B. Label-free screening of foodborne Salmonella using surface plasmon resonance imaging. Anal. Bioanal. Chem. 2018, 410, 5455–5464. [Google Scholar] [CrossRef]
- Bulard, E.; Bouchet-Spinelli, A.l.; Chaud, P.; Roget, A.; Calemczuk, R.; Fort, S.b.; Livache, T. Carbohydrates as new probes for the identification of closely related Escherichia coli strains using surface plasmon resonance imaging. Anal. Chem. 2015, 87, 1804–1811. [Google Scholar] [CrossRef]
- Du, Z.; Tsow, F.; Wang, D.; Tao, N. Real-Time Simultaneous Separation and Detection of Chemicals Using Integrated Microcolumn and Surface Plasmon Resonance Imaging Micro-GC. IEEE Sens. J. 2017, 18, 1351–1357. [Google Scholar] [CrossRef]
- Brenet, S.; John-Herpin, A.; Gallat, F.-X.; Musnier, B.; Buhot, A.; Herrier, C.; Rousselle, T.; Livache, T.; Hou, Y. Highly-Selective Optoelectronic Nose Based on Surface Plasmon Resonance Imaging for Sensing Volatile Organic Compounds. Anal. Chem. 2018, 90, 9879–9887. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Loo, J.F.C.; Chen, J.; Yam, Y.; Chen, S.-C.; He, H.; Kong, S.K.; Ho, H.P. Recent Advances in Surface Plasmon Resonance Imaging Sensors. Sensors 2019, 19, 1266. https://doi.org/10.3390/s19061266
Wang D, Loo JFC, Chen J, Yam Y, Chen S-C, He H, Kong SK, Ho HP. Recent Advances in Surface Plasmon Resonance Imaging Sensors. Sensors. 2019; 19(6):1266. https://doi.org/10.3390/s19061266
Chicago/Turabian StyleWang, Dongping, Jacky Fong Chuen Loo, Jiajie Chen, Yeung Yam, Shih-Chi Chen, Hao He, Siu Kai Kong, and Ho Pui Ho. 2019. "Recent Advances in Surface Plasmon Resonance Imaging Sensors" Sensors 19, no. 6: 1266. https://doi.org/10.3390/s19061266
APA StyleWang, D., Loo, J. F. C., Chen, J., Yam, Y., Chen, S. -C., He, H., Kong, S. K., & Ho, H. P. (2019). Recent Advances in Surface Plasmon Resonance Imaging Sensors. Sensors, 19(6), 1266. https://doi.org/10.3390/s19061266