Relay Positions Considering Interference from Other Sub-Channels in OFDMA-Based D2D Group-Casting Systems †
Abstract
:1. Introduction
2. System Model
2.1. Device-To-Device (D2D) Group-Casting
2.2. Scenario 1: Single Transmission through a Relay
2.3. Scenario 2: Repeated Transmission through a Relay
2.4. Scenario 3: Repeated Transmission through a Successful Relay
3. Outage Probabilities
3.1. Outage Probabilities
3.2. Scenario 1: Single Transmission though a Relay
3.3. Scenario 2: Repeated Transmission through a Relay
3.4. Scenario 3: Repeated Transmission through a Successful Relay
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mach, P.; Becvar, Z.; Vanek, T. In-Band Device-to-Device Communication in OFDMA Cellular Networks: A Survey and Challenges. IEEE Commun. Surv. Tut. 2015, 17, l185–l1922. [Google Scholar] [CrossRef]
- Rim, M.; Yeo, G.; Chae, S.; Kang, C.G. Optimization Discovery Period for Peer Device Discovery in Cellular-assisted D2D Communication Systems. IEICE Trans. Commun. 2015, E98-B, 1373–1380. [Google Scholar] [CrossRef]
- Rim, M.; Chae, S.; Kang, C.G. Optimization Framework and Parameter Determination for Proximity-Based Device Discovery in D2D Communication Systems. Int. J. Antennas Propag. 2015, 2015. [Google Scholar] [CrossRef]
- Kebriaei, H.; Maham, B.; Niyato, D. Double Sided Bandwidth-Auction Game for Cognitive Device-to-Device Communication in Cellular Networks. IEEE Trans. Veh. Technol. 2016, 65, 7467–7487. [Google Scholar] [CrossRef]
- Kim, J.-B.; Lee, I.-H.; Lee, J.H. Capacity Scaling for D2D Aided Cooperative Relaying Systems Using NOMA. IEEE Wirel. Commun. Lett. 2018, 7, 42–45. [Google Scholar] [CrossRef]
- Datsika, E.; Antonopoulos, A.; Zorba, N.; Verikoukis, C. Cross-Network Performance Analysis of Network Coding Aided Cooperative Outband D2D Communications. IEEE Trans. Wireless Commun. 2017, 16, 3176–3188. [Google Scholar] [CrossRef]
- Swain, S.N.; Thakur, R.; Chebiyyam, S.R.M. Coverage and Rate Analysis for Facilitating Machine-to-Machine Communication in LTE-A Networks Using Device-to-Device Communication. IEEE Trans. Mob. Comput. 2017, 16, 3014–3027. [Google Scholar] [CrossRef]
- Datsika, E.; Antonopoulos, A.; Zorba, N.; Verikoukis, C. Green Cooperative Device–to–Device Communication: A Social–Aware Perspective. IEEE Access 2016, 4, 3697–3707. [Google Scholar] [CrossRef]
- Kar, U.N.; Sanyal, D.K. An Overview of Device-to-Device Communication in Cellular Networks. ICT Express 2018, 4, 203–208. [Google Scholar] [CrossRef]
- Hoyhta, M.; Apilo, O.; Lasanen, M. Review of Latest Advances in 3GPP Standardization: D2D Communication in 5G Systems and Its Energy Consumption Models. Future Internet 2018, 10. [Google Scholar] [CrossRef]
- Jameel, F.; Hamid, Z.; Jabeen, F.; Zeadally, S.; Javed, M.A. A Survey of Device-to-Device Communications: Research Issues and Challenges. IEEE Commun. Surv. Tut. 2018, 20, 2133–2168. [Google Scholar] [CrossRef]
- Yan, J.; Wu, D.; Sanyal, S.; Wang, R. Trust-Oriented Partner Selection in D2D Cooperative Communications. IEEE Access 2017, 5, 3444–3453. [Google Scholar] [CrossRef]
- Antonopoulos, A.; Kartsakli, E.; Verikoukis, C. Game theoretic D2D content dissemination in 4G cellular networks. IEEE Commun. Mag. 2014, 52, 125–132. [Google Scholar] [CrossRef]
- Zaidi, A.A.; Baldemair, R.; Moles-Cases, V.; He, N.; Werner, K.; Cedergren, A. OFDM Numerology Design for 5G New Radio to Support IoT, eMBB, and MBSFN. IEEE Commun. Stand. Mag. 2018, 2, 78–83. [Google Scholar] [CrossRef]
- Wu, X.; Tavildar, S.; Shakkottai, S.; Richardson, T.; Li, J.; Laroia, R.; Jovicic, A. FlashLinQ: A Synchronous Distributed Scheduler for Peer-to-Peer Ad Hoc Networks. IEEE/ACM Trans. Netw. 2013, 21, 1215–1228. [Google Scholar] [CrossRef]
- Rim, M.; Chae, S.; Kang, C.G. Interference Mitigation and D2D Parameter Estimation for Distributed-Control D2D Underlay Systems. Trans. Emerging Telecommun. Technol. 2017, 28, 1–10. [Google Scholar] [CrossRef]
- Kang, C.G.; Kim, J.W.; Kang, H.J.; Rim, M. Adaptive Yielding Scheme for Distributed Link Scheduling in OFDM-Based Synchronous Device-to-Device (D2D) Ad Hoc Network. EURASIP J. Wirel. Commun. Netw. 2014, 2014. [Google Scholar] [CrossRef]
- Sharma, S.; Gupta, N.; Bohara, V.A. OFDMA-Based Device-to-Device Communication Frameworks: Testbed Deployment and Measurement Results. IEEE Access 2018, 6, 12019–12030. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, D.; Zhao, C.; Li, J.C.F.; Lei, M. Resource Sharing of Underlaying Device-to-Device and Uplink Cellular Communications. IEEE Commun. Lett. 2013, 17, 1148–1151. [Google Scholar] [CrossRef]
- Wang, H.; Chu, X. Distance-Constrained Resource-Sharing Criteria for Device-to-Device Communications Underlaying Cellular Networks. Electron. Lett. 2012, 48, 528–530. [Google Scholar] [CrossRef]
- Feng, D.; Lu, L.; Yi, Y.-W.; Li, G.Y.; Feng, G.; Li, S. Device-to-Device Communications Underlaying Cellular Networks. IEEE Trans. Commun. 2013, 61, 3541–3551. [Google Scholar] [CrossRef]
- Samsung. R1-133121: In-band Emission Impact on D2D Discovery. In Proceedings of the 3GPP TSG RAN WG1 Meeting #74, Barcelona, Spain, 19–23 August 2013. [Google Scholar]
- Li, D.; Liu, Y. In-band Emission in LTE-A D2D: Impact and Addressing Schemes. In Proceedings of the IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, UK, 11–14 May 2015; pp. 1–5. [Google Scholar]
- Kim, D.; Kwak, Y.; Oh, J.; Kim, Y.; Lee, J. Discovery Resource Grouping for D2D Discovery for Mitigation of In-band Emission in LTE-Advanced. In Proceedings of the IEEE Globecom Workshops (GC Wkshps), Austin, TX, USA, 8–12 December 2014; pp. 869–874. [Google Scholar]
- Rim, M.; Kang, C.G. Carrier Sensing for OFDMA-based D2D Group-casting Systems. IEEE Trans. Veh. Technol. 2017, 66, 2301–2310. [Google Scholar] [CrossRef]
- Erturk, M.C.; Mukherjee, S.; Ishii, H.; Arslan, H. Distributions of Transmit Power and SINR in Device-to-Device Networks. IEEE Commun. Lett. 2013, 17, 273–276. [Google Scholar] [CrossRef]
- Lee, D.H.; Choi, K.W.; Jeon, W.S.; Jeong, D.G. Two-Stage Semi-Distributed Resource Management for Device-to-Device Communication in Cellular Networks. IEEE Trans. on Wirel. Commun. 2014, 13, 1908–1920. [Google Scholar] [CrossRef]
- Katsinis, G.; Tsiropoulou, E.E.; Papavassiliou, S. Joint Resource Block and Power Allocation for Interference Management in Device to Device Underlay Cellular Networks: A Game Theoretic Approach. Mob. Netw. Appl. 2017, 22, 539–551. [Google Scholar] [CrossRef]
- Katsinis, G.; Tsiropoulou, E.E.; Papavassiliou, S. Multicell Interference Management in Device to Device Underlay Cellular Networks. Future Internet 2017, 9. [Google Scholar] [CrossRef]
- Xing, H.; Hakoa, S. The Investigation of Power Control Schemes for a Device-to-Device Communication Integrated into OFDMA Cellular System. In Proceedings of the 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Instanbul, Turkey, 26–30 September 2010; pp. 1775–1780. [Google Scholar]
- Go, E.; Kim, S.; Song, Y.; Kim, J.; Rim, M. Relay Position Considering Interference from Other Sub-Channels in D2D Group-casting Systems. In Proceedings of the 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), Prague, Czech Republic, 3–6 July 2018; pp. 289–292. [Google Scholar]
- Samsung. R1-133117: Discussion on D2D Group Communication. In Proceedings of the 3GPP TSG RAN WG1 Meeting #74, Barcelona, Spain, 19–23 August 2013. [Google Scholar]
- Fodor, G.; Dahlman, E.; Mildh, G.; Parkvall, S.; Reider, N.; Miklos, G.; Turanyi, Z. Design Aspects of Network Assisted Device-to-Device Communications. IEEE Commun. Mag. 2012, 50, 170–177. [Google Scholar] [CrossRef]
- Phunchongharn, P.; Hossain, E.; Kim, D.I. Resource Allocation for Device-to-Device Communications Underlaying LTE-Advanced Networks. IEEE Wirel.Commun. 2013, 20, 91–100. [Google Scholar] [CrossRef]
- Waqas, M.; Ahmad, M.A.; Hammadullah; Jabeen, T.; Sidhu, G.A.S. An Optimization Scheme for Dual-hop Device-to-Device (DH-D2D) Transmission. In Proceedings of the 12th International Conference on High-capacity Optical Networks and Enabling/Emerging Technologies (HONET), Islamabad, Pakistan, 21–23 December 2015; pp. 1–5. [Google Scholar]
- Lee, D.; Kim, S.-I.; Lee, J.; Heo, J. Performance of Multihop Decode-and-Forward Relaying assisted Device-to-Device Communication Underlaying Cellular Networks. In Proceedings of the International Symposium on Information Theory and its Applications, Honolulu, HI, USA, 28–31 October 2012; pp. 455–459. [Google Scholar]
- Shaikh, F.S.; Wismuller, R. Routing in Multi-Hop Cellular Device-to-Device Networks: A Survey. IEEE Commun. Surv. Tut. 2018, 20, 2622–2657. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Cell radius () | 100 m |
Group radius | 30 m |
Number of sub-channels | 25 |
Number of interferers per sub-channel | 1 |
Number of receivers in D2D group | 30 |
Target signal-to-interference ratio (SIR) at relay () | 10 dB |
Target SIR at destination () | 10 dB |
Interference effect to other sub-channels (, ) | −30 dB |
Source transmission power () | 20 dBm |
Relay transmission power () | 20 dBm |
Interferer transmission power () | 20 dBm |
Path loss exponent between two devices () | 4 |
Center position of D2D group | (0 m, 0 m) |
Source position () | (30~0 m, 0 m) |
Relay position () | (−30~30 m, 0 m) |
Parameters | Values |
---|---|
Interference effect to other sub-channels (, ) | −24 dB for 6 sub-channels −30 dB for 18 sub-channels |
Source transmission power () | 17 dBm |
Relay transmission power () | 17 dBm |
Interferer transmission power ) | 20 dBm |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rim, M.; Go, E. Relay Positions Considering Interference from Other Sub-Channels in OFDMA-Based D2D Group-Casting Systems. Sensors 2019, 19, 1374. https://doi.org/10.3390/s19061374
Rim M, Go E. Relay Positions Considering Interference from Other Sub-Channels in OFDMA-Based D2D Group-Casting Systems. Sensors. 2019; 19(6):1374. https://doi.org/10.3390/s19061374
Chicago/Turabian StyleRim, Minjoong, and Eulhyeon Go. 2019. "Relay Positions Considering Interference from Other Sub-Channels in OFDMA-Based D2D Group-Casting Systems" Sensors 19, no. 6: 1374. https://doi.org/10.3390/s19061374
APA StyleRim, M., & Go, E. (2019). Relay Positions Considering Interference from Other Sub-Channels in OFDMA-Based D2D Group-Casting Systems. Sensors, 19(6), 1374. https://doi.org/10.3390/s19061374