Variability of the UHF Signals Generated by Partial Discharges in Mineral Oil
Abstract
:1. Introduction
2. Fundamentals of PD
3. Research Methodology
4. Results and Discussion
4.1. Spectrum Analysis
4.2. PRPD Patterns Analysis
4.3. Descriptors Analysis
5. Conclusions
- Confirmed that UHF signals generated by SD vary in time no matter what dielectric material is used as a solid barrier and the very first period after PD inception is essential regarding the observed variabilities.
- Confirmed that SD generated on each of the applied solid dielectric materials emits different spectrum in the UHF range—the most significant differences are noticed according to the total energy of the UHF spectrum.
- UHF signals emitted by SD when analyzing in the long-term perspective show different variabilities, that depend on the applied material.
- Confirmed that PBP is the most prone to degradation by SD which results in the highest variability of the emitted UHF signals.
- Regarding the PBP all of the analyzed descriptors showed a significant local peak within the first 48 h.
- Confirmed that UHF signals emitted by prolonged SD on PTFE are the least variable from among all investigated scenarios—although they also vary.
- The interpretation process of the UHF signals may be enhanced if information about the duration of the analyzed PD is available (e.g., extracted from the on-line PD monitoring system if available).
Funding
Conflicts of Interest
References
- Tenbohlen, S.; Coenen, S.; Djamali, M.; Müller, A.; Samimi, M.H.; Siegel, M. Diagnostic measurements for power transformers. Energies 2016, 9, 347. [Google Scholar] [CrossRef]
- Murugan, R.; Ramasamy, R. Failure analysis of power transformer for effective maintenance planning in electric utilities. Eng. Fail. Anal. 2015, 55, 182–192. [Google Scholar] [CrossRef]
- Calcara, L.; Pompili, M.; Muzi, F. Standard evolution of partial discharge detection in dielectric liquids. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 2–6. [Google Scholar] [CrossRef]
- Jaroszewski, M.; Rakowiecki, K. Partial discharge inception voltage in transformer natural ester liquid—Effect of the measurement method in the presence of moisture. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 2477–2482. [Google Scholar] [CrossRef]
- Kunicki, M.; Nagi, Ł. Correlation Analysis of Partial Discharge Measurement Results. In Proceedings of the IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, Italy, 6–9 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Álvarez, F.; Garnacho, F.; Ortego, J.; Sánchez-Urán, M.Á. Application of HFCT and UHF sensors in on-line partial discharge measurements for insulation diagnosis of high voltage equipment. Sensors 2015, 15, 7360–7387. [Google Scholar] [CrossRef]
- Kozioł, M.; Wotzka, D.; Boczar, T.; Frącz, P. Application of optical spectrophotometry for analysis of radiation spectrum emitted by electric arc in the air. J. Spectrosc. 2016, 2016. [Google Scholar] [CrossRef]
- Kozioł, M. Mathematical model of optical signals emitted by electrical discharges occuring in electroinsulating oil. E3S Web Conf. 2017, 19, 01042. [Google Scholar] [CrossRef] [Green Version]
- Rozga, P. Using the light emission measurement in assessment of electrical discharge development in different liquid dielectrics under lightning impulse voltage. Electr. Power Syst. Res. 2016, 140, 321–328. [Google Scholar] [CrossRef]
- Utami, N.Y.; Tamsir, Y.; Pharmatrisanti, A.; Gumilang, H.; Cahyono, B.; Siregar, R. Evaluation condition of transformer based on infrared thermography results. In Proceedings of the IEEE International Conference on Properties and Applications of Dielectric Materials, Harbin, China, 19–23 July 2009; pp. 1055–1058. [Google Scholar] [CrossRef]
- Kunicki, M.; Cichon, A.; Borucki, S. Measurements on partial discharge in on-site operating power transformer: A case study. IET Gener. Transm. Distrib. 2018, 12, 2487–2495. [Google Scholar] [CrossRef]
- Rozga, P. Studies on behavior of dielectric synthetic ester under the influence of concentrated heat flux. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 908–914. [Google Scholar] [CrossRef]
- Kunicki, M.; Cichoń, A. Application of a phase resolved partial discharge pattern analysis for acoustic emission method in high voltage insulation systems diagnostics. Arch. Acoust. 2018, 43, 235–243. [Google Scholar] [CrossRef]
- Kundu, P.; Kishore, N.K.; Sinha, A.K. Identification of two simultaneous partial discharge sources in an oil-pressboard insulation system using acoustic emission techniques. Appl. Acoust. 2012, 73, 395–401. [Google Scholar] [CrossRef]
- Boya, C.; Robles, G.; Parrado-Hernández, E.; Ruiz-Llata, M. Detection of partial discharge sources using UHF sensors and blind signal separation. Sensors 2017, 17, 2625. [Google Scholar] [CrossRef]
- Kunicki, M.; Cichoń, A.; Nagi, Ł. Statistics based method for partial discharge identification in oil paper insulation systems. Electr. Power Syst. Res. 2018, 163, 559–571. [Google Scholar] [CrossRef]
- Markalous, S.M.; Tenbohlen, S.; Feser, K. Detection and location of partial discharges in power transformers using acoustic and electromagnetic signals. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1576–1583. [Google Scholar] [CrossRef]
- Fresno, J.M.; Robles, G.; Martínez-Tarifa, J.M.; Stewart, B.G. Survey on the performance of source localization algorithms. Sensors 2017, 17, 2666. [Google Scholar] [CrossRef]
- Khan, U.F.; Lazaridis, P.I.; Mohamed, H.; Albarracín, R.; Zaharis, Z.D.; Atkinson, R.C.; Tachtatzis, C.; Glover, I.A. An efficient algorithm for partial discharge localization in high-voltage systems using received signal strength. Sensors 2018, 18, 4000. [Google Scholar] [CrossRef] [PubMed]
- Umemoto, T.; Tenbohlen, S. Novel simulation technique of electromagnetic wave propagation in the ultra high frequency range within power transformers. Sensors 2018, 18, 4236. [Google Scholar] [CrossRef]
- Siegel, M.; Beltle, M.; Tenbohlen, S. Application of UHF sensors for pd measurement at power transformers. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 331–339. [Google Scholar] [CrossRef]
- Kiiza, R.C.; Niasar, M.G.; Nikjoo, R.; Wang, X.; Edin, H. Change in partial discharge activity as related to degradation level in oil-impregnated paper insulation: Effect of high voltage impulses. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 1243–1250. [Google Scholar] [CrossRef]
- Cui, Y.; Zhu, L.; Ji, S.; Cao, P.; Zhang, F. Partial discharge development in needle-plane configuration of oil-paper insulation under AC voltage. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 2469–2476. [Google Scholar] [CrossRef]
- Peng, P.; Cui, Y.; Ji, S.; Zhang, F.; Cao, P.; Zhu, L. Evolution of partial discharge of oil-paper insulation under long-Term AC voltage. In Proceedings of the IEEE International Power Modulator and High Voltage Conference (IPMHVC), San Francisco, CA, USA, 6–9 July 2016; pp. 166–170. [Google Scholar] [CrossRef]
- Wei, Y.H.; Zhu, M.X.; Li, Y.; Zhao, L.; Deng, J.B.; Mu, H.B.; Zhang, G.J. Partial discharge characteristics and trap parameters of aged oil-impregnated paper. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 3442–3450. [Google Scholar] [CrossRef]
- Florkowska, B.; Roehrich, J.; Zydron, P.; Florkowski, M.; Rybak, A. Interaction of conductor with polymeric materials (XLPE/EPR) at partial discharges. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 2119–2127. [Google Scholar] [CrossRef]
- Iwashita, Y.; Kurihara, T.; Takahashi, T.; Okamoto, T. Partial discharge characteristics of oil impregnated insulation system with an oil gap under continuous AC voltage application. In Proceedings of the 2014 International Symposium on Electrical Insulating Materials, Niigata, Japan, 1–5 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 212–215. [Google Scholar] [CrossRef]
- Kunicki, M. Behavior of partial discharges in mineral oil with solid dielectric barrier under long-term AC voltage. In Proceedings of the 2nd IEEE Inernational Conference on Dielectrics (ICD), Budapest, Hungary, 1–5 July 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Kunicki, M.; Cichon, A. Analysis on partial discharges variability in mineral oil under long-term AC voltage. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1837–1845. [Google Scholar] [CrossRef]
- Rozga, P. Streamer propagation and breakdown in a very small point-insulating plate gap in mineral oil and ester liquids at positive lightning impulse voltage. Energies 2016, 9, 467. [Google Scholar] [CrossRef]
- Rozga, P.; Stanek, M.; Pasternak, B. Characteristics of negative streamer development in ester liquids and mineral oil in a point-to-sphere electrode system with a pressboard barrier. Energies 2018, 11, 1088. [Google Scholar] [CrossRef]
- Zainuddin, H.; Mitchinson, P.M.; Lewin, P.L. Investigation on the surface discharge phenomenon at the oil-pressboard interface. In Proceedings of the IEEE International Conference on Dielectric Liquids, Trondheim, Norway, 26–30 June 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Kunicki, M. Comparison of capacitive and inductive sensors designed for partial discharges measurements in electrical power apparatus. E3S Web Conf. 2017, 19. [Google Scholar] [CrossRef]
- Pattanadech, N.; Pratomosiwi, F.; Wieser, B.; Baur, M.; Muhr, M. Partial discharge characteristics of mineral oil using needle—Plane and needle-sphere electrode configuration base on pulse current measurement. In Proceedings of the 2012 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Montreal, QC, Canada, 14–17 October 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 64–67. [Google Scholar] [CrossRef]
- Scatiggio, F.; Tumiatti, V.; Maina, R.; Tumiatti, M.; Pompili, M.; Bartnikas, R. Corrosive sulfur induced failures in oil-filled electrical power transformers and shunt reactors. IEEE Trans. Power Deliv. 2009, 24, 1240–1248. [Google Scholar] [CrossRef]
- Yang, L.; Lin, Y.; Liao, R.; Zhao, X.; Sun, W.; Zhang, Y. Effects of temperature and aging on furfural partitioning in the oil-paper system of power transformers. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1393–1401. [Google Scholar] [CrossRef]
- Majidi, M.; Oskuoee, M. Improving pattern recognition accuracy of partial discharges by new data preprocessing methods. Electr. Power Syst. Res. 2015, 119, 100–110. [Google Scholar] [CrossRef]
- Florkowski, M.; Florkowska, B.; Furgał, J.; Zydron, P. Impact of high voltage harmonics on interpretation of partial discharge patterns. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 2009–2016. [Google Scholar] [CrossRef]
Parameter | Value | |
---|---|---|
Before Tests | After Tests | |
Breakdown voltage, (kV)—2.5 mm gap (IEC60156) | 64 (relative deviation 19%) | 61 (relative deviation 16%) |
Dissipation factor—50 °C, (tanδ) | 0.0003 | 0.0005 |
Water content—Karl-Fischer, (ppm) | 29 | 30 |
Resistivity 50 °C, (Ωm) | 6.2 × 1011 | 5.9 × 1011 |
Neutralization number, (mgKOH/g) | <0.01 | <0.01 |
Flash point, (°C) | 141 | 141 |
Applied Solid Dielectric | Initial | End |
---|---|---|
PBP | −35.59 dBm | −31.07 dBm |
PTFE | −37.19 dBm | −39.30 dBm |
GLS | −42.30 dBm | −39.45 dBm |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunicki, M. Variability of the UHF Signals Generated by Partial Discharges in Mineral Oil. Sensors 2019, 19, 1392. https://doi.org/10.3390/s19061392
Kunicki M. Variability of the UHF Signals Generated by Partial Discharges in Mineral Oil. Sensors. 2019; 19(6):1392. https://doi.org/10.3390/s19061392
Chicago/Turabian StyleKunicki, Michal. 2019. "Variability of the UHF Signals Generated by Partial Discharges in Mineral Oil" Sensors 19, no. 6: 1392. https://doi.org/10.3390/s19061392
APA StyleKunicki, M. (2019). Variability of the UHF Signals Generated by Partial Discharges in Mineral Oil. Sensors, 19(6), 1392. https://doi.org/10.3390/s19061392