Online Distributed User Association for Heterogeneous Radio Access Network
Abstract
:1. Introduction
1.1. HetNet and User Association
1.2. Load Balancing Problem
2. Related Works
Offline and Online User Association
3. System Model and Problem Formulation
Problem Formulation
4. Algorithm Description
- = Set of BSs neighbors to BS j.
- = Number of BS(s) that can be accessed by the ith UE.
Algorithm 1 Centralized solution |
|
4.1. Probability Scheme
Algorithm 2 Probability scheme |
|
4.2. Hierarchical d-Choices Scheme
Algorithm 3 Two-level d-choices scheme. |
|
Effects of Different d-Choices and Different User Association Methods
5. Performance Analysis
Time Complexity Analysis
6. Performance Evaluation
6.1. Loads among Different BSs
6.2. CDF of Spectrum Efficiency
6.3. Normalized Rate
6.4. Jain’s Fairness
7. Discussion
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cisco. Cisco Vitual Networking Index: Global Mobile Data TRAFFIC Forecase Update, 2015–2020; White Paper; Cisco: San Jose, CA, USA, 2016. [Google Scholar]
- Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update 2016–2021; White Paper; Cisco: San Jose, CA, USA, 2017. [Google Scholar]
- Masini, B.M.; Bazzi, A.; Zanella, A. Vehicular Visible Light Networks for Urban Mobile Crowd Sensing. Sensors 2018, 18, 1177. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Hu, R.Q.; Wang, J.; Xu, P.; Qian, Y. Applying VLC in 5G networks: Architectures and key technologies. IEEE Netw. 2016, 30, 77–83. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Aloqaily, M.; Zaman, F.; Jararweh, Y. Exploring Computing at the Edge: A Multi-Interface System Architecture Enabled Mobile Device Cloud. In Proceedings of the 2018 IEEE 7th International Conference on Cloud Networking (CloudNet), Tokyo, Japan, 22–24 October 2018; pp. 1–4. [Google Scholar]
- Aloqaily, M.; Al Ridhawi, I.; Kantraci, B.; Mouftah, H.T. Vehicle as a resource for continuous service availability in smart cities. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017; pp. 1–6. [Google Scholar]
- Olwal, T.O.; Djouani, K.; Kurien, A.M. A survey of resource management toward 5G radio access networks. IEEE Commun. Surv. Tutor. 2016, 18, 1656–1686. [Google Scholar] [CrossRef]
- Kendrick, P.; Baker, T.; Maamar, Z.; Hussain, A.; Buyya, R.; Al-Jumeily, D. An Efficient Multi-Cloud Service Composition Using a Distributed Multiagent-based, Memory-driven Approach. IEEE Trans. Sustain. Comput. 2018. [Google Scholar] [CrossRef]
- Otoum, S.; Kantarci, B.; Mouftah, H. Adaptively supervised and intrusion-aware data aggregation for wireless sensor clusters in critical infrastructures. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Chengdu, China, 19–21 December 2018; pp. 1–6. [Google Scholar]
- Sharma, L.; Liang, J.M.; Wu, S.L. Energy-Efficient Resource Scheduling within DRX Cycles for LTE-A Networks with Carrier Aggregation. IEEE Access 2018, 6, 28501–28513. [Google Scholar] [CrossRef]
- Otoum, S.; Kantarci, B.; Mouftah, H.T. Detection of known and unknown intrusive sensor behavior in critical applications. IEEE Sens. Lett. 2017, 1, 1–4. [Google Scholar] [CrossRef]
- Kaleem, Z.; Hui, B.; Chang, K. QoS priority-based dynamic frequency band allocation algorithm for load balancing and interference avoidance in 3GPP LTE HetNet. EURASIP J. Wirel. Commun. Netw. 2014. [Google Scholar] [CrossRef]
- Hoadley, J.; Maveddat, P. Enabling small cell deployment with HetNet. IEEE Wirel. Commun. 2012, 19, 4–5. [Google Scholar] [CrossRef]
- Andrews, J.G.; Singh, S.; Ye, Q.; Lin, X.; Dhillon, H.S. An overview of load balancing in HetNets: Old myths and open problems. IEEE Wirel. Commun. 2014, 21, 18–25. [Google Scholar] [CrossRef]
- Lei, L.; Zhong, Z.; Zheng, K.; Chen, J.; Meng, H. Challenges on wireless heterogeneous networks for mobile cloud computing. IEEE Wirel. Commun. 2013, 20, 34–44. [Google Scholar] [CrossRef]
- 3GPP TS 36.304: Evolved Universal Terrestrial Radio Access (E-UTRA); UE Procedures in Idle Mode. V8.2.0 (Release 8). 2008. Available online: https://www.etsi.org/deliver/etsi_ts/136300_136399/136304/08.02.00_60/ts_136304v080200p.pdf (accessed on 20 March 2019).
- Ye, Q.; Rong, B.; Chen, Y.; Al-Shalash, M.; Caramanis, C.; Andrews, J.G. User association for load balancing in heterogeneous cellular networks. IEEE Trans. Wirel. Commun. 2013, 12, 2706–2716. [Google Scholar] [CrossRef]
- Nokia Siemens Networks, Nokia, Aspects of Pico Node Range Extension, 3GPP TSG RAN WG1 Meeting 61. R1-103824. 2010. Available online: http://goo.gl/XDKXI (accessed on 20 March 2019).
- Ao, W.C.; Konstantinos, P. Approximation Algorithms for Online User Association in Multi-Tier Multi-Cell Mobile Networks. IEEE/ACM Trans. Netw. 2017, 25, 2361–2374. [Google Scholar] [CrossRef]
- Zhang, Y.; Bethanabhotla, D.; Hao, T.; Psounis, K. Near-optimal user-cell association schemes for real-world networks. In Proceedings of the Information Theory and Applications Workshop (ITA), San Diego, CA, USA, 1–6 February 2015; pp. 204–213. [Google Scholar]
- Liu, D.; Wang, L.; Chen, Y.; Elkashlan, M.; Wong, K.K.; Schober, R.; Hanzo, L. User association in 5G networks: A survey and an outlook. IEEE Commun. Surv. Tutor. 2016, 18, 1018–1044. [Google Scholar] [CrossRef]
- Ramazanali, H.; Mesodiakaki, A.; Vinel, A.; Verikoukis, C. Survey of user association in 5G HetNets. In Proceedings of the 2016 8th IEEE Latin-American Conference on Communications (LATINCOM), Medellin, Colombia, 15–17 November 2016; pp. 1–6. [Google Scholar]
- Gomez, C.; Shami, A.; Wang, X. Machine Learning Aided Scheme for Load Balancing in Dense IoT Networks. Sensors 2018, 18, 3779. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Hu, R.Q.; Wei, L.; Wu, G. QoE-aware mobile association and resource allocation over wireless heterogeneous networks. In Proceedings of the Global Communications Conference (GLOBECOM), Austin, TX, USA, 8–12 December 2014; pp. 4695–4701. [Google Scholar]
- Fooladivanda, D.; Al Daoud, A.; Rosenberg, C. Joint channel allocation and user association for heterogeneous wireless cellular networks. In Proceedings of the 2011 IEEE 22nd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Toronto, ON, Canada, 11–14 September 2011; pp. 384–390. [Google Scholar]
- Ghimire, J.; Rosenberg, C. Resource allocation, transmission coordination and user association in heterogeneous networks: A flow-based unified approach. IEEE Trans. Wirel. Commun. 2016, 12, 1340–1351. [Google Scholar] [CrossRef]
- Zhou, T.; Liu, Z.; Zhao, J.; Li, C.; Yang, L. Joint User Association and Power Control for Load Balancing in Downlink Heterogeneous Cellular Networks. IEEE Trans. Veh. Technol. 2018, 67, 2582–2593. [Google Scholar] [CrossRef] [Green Version]
- Bogale, T.E.; Le, L.B. Massive MIMO and mmWave for 5G wireless HetNet: Potential benefits and challenges. IEEE Veh. Technol. Mag. 2016, 11, 64–75. [Google Scholar] [CrossRef]
- Ding, Z.; Wang, X.; Yang, W. A Dynamic Load Balancing Algorithm in Heterogeneous Network. In Proceedings of the 2016 7th International Conference on Intelligent Systems, Modelling and Simulation (ISMS), Bali, Indonesia, 25–30 June 2016; pp. 337–342. [Google Scholar]
- Naghavi, P.; Rastegar, S.H.; Shah-Mansouri, V.; Kebriaei, H. Learning RAT selection game in 5G heterogeneous networks. IEEE Wirel. Commun. Lett. 2016, 5, 52–55. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, W.; Ao, H.; Chu, J.; Zhou, Q.; Zhou, B.; Wang, K.; Li, Y.; Xue, P. A Novel Optimal Joint Resource Allocation in Cooperative Multicarrier Networks: Theory and Practice. Sensors 2016, 16, 522. [Google Scholar] [CrossRef]
- Kim, H.; De Veciana, G.; Yang, X.; Venkatachalam, M. Distributed α-optimal user association and cell load balancing in wireless networks. IEEE/ACM Trans. Netw. 2012, 20, 177–190. [Google Scholar] [CrossRef]
- Han, Q.; Yang, B.; Miao, G.; Chen, C.; Wang, X.; Guan, X. Backhaul-aware user association and resource allocation for energy-constrained HetNets. IEEE Trans. Veh. Technol. 2017, 66, 580–593. [Google Scholar] [CrossRef]
- Son, K.; Chong, S.; De Veciana, G. Dynamic association for load balancing and interference avoidance in multi-cell networks. IEEE Trans. Wirel. Commun. 2009, 8, 3566–3576. [Google Scholar] [CrossRef] [Green Version]
- Jo, H.S.; Sang, Y.J.; Xia, P.; Andrews, J.G. Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis. IEEE Trans. Wirel. Commun. 2012, 11, 3484–3495. [Google Scholar] [CrossRef]
- Carvalho, G.H.; Woungang, I.; Anpalagan, A.; Hossain, E. Qos-aware energy-efficient joint radio resource management in multi-rat heterogeneous networks. IEEE Trans. Veh. Technol. 2016, 65, 6343–6365. [Google Scholar] [CrossRef]
- Grosu, D.; Chronopoulos, A.T. Noncooperative load balancing in distributed systems. J. Parallel Distrib. Comput. 2005, 65, 1022–1034. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wang, Y.; Ding, Z.; Wang, X. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things. Sensors 2015, 15, 24230–24256. [Google Scholar] [CrossRef] [Green Version]
- Aryafar, E.; Keshavarz-Haddad, A.; Wang, M.; Chiang, M. RAT selection games in HetNets. In Proceedings of the INFOCOM, Turin, Italy, 14–19 April 2013; pp. 998–1006. [Google Scholar]
- Han, T.; Ansari, N. Network utility aware traffic load balancing in backhaul-constrained cache-enabled small cell networks with hybrid power supplies. IEEE Trans. Mob. Comput. 2017, 16, 2819–2832. [Google Scholar] [CrossRef]
- Shen, K.; Wei, Y. Distributed pricing-based user association for downlink heterogeneous cellular networks. IEEE J. Sel. Areas Commun. 2014, 32, 1100–1113. [Google Scholar] [CrossRef]
- Gupta, A.K.; Dhillon, H.S.; Vishwanath, S.; Andrews, J.G. Downlink multi-antenna heterogeneous cellular network with load balancing. IEEE Trans. Commun. 2014, 62, 4052–4067. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Lin, Z.; Mao, G.; Vucetic, B. User association with unequal user priorities in heterogeneous cellular networks. IEEE Trans. Veh. Technol. 2016, 65, 7374–7388. [Google Scholar] [CrossRef]
- Duan, P.; Zhang, C.; Mao, G.; Zhang, B. Applying Distributed Constraint Optimization Approach to the User Association Problem in Heterogeneous Networks. IEEE Trans. Cybern. 2018, 48, 1696–1707. [Google Scholar] [CrossRef] [PubMed]
- Mesodiakaki, A.; Adelantado, F.; Antonopoulos, A.; Alonso, L.; Verikoukis, C. Energy and spectrum efficient user association in 5G heterogeneous networks. In Proceedings of the 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 4–8 September 2016; pp. 1–6. [Google Scholar]
- Petrova, M.; Olano, N.; Mähönen, P. Balls and bins distributed load balancing algorithm for channel allocation. In Proceedings of the 2010 Seventh International Conference on Wireless On-demand Network Systems and Services (WONS), Kranjska Gora, Slovenia, 3–5 February 2010; pp. 25–30. [Google Scholar]
- Berenbrink, P.; Brinkmann, A.; Friedetzky, T.; Nagel, L. Balls into non-uniform bins. In Proceedings of the 2010 IEEE International Symposium on Parallel and Distributed Processing (IPDPS), Atlanta, GA, USA, 19–23 April 2010; pp. 1–10. [Google Scholar]
- Godfrey, P. Balls and bins with structure: balanced allocations on hypergraphs. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for INDUSTRIAL and Applied Mathematics, San Francisco, CA, USA, 20–22 January 2008; pp. 511–517. [Google Scholar]
- Lan, T.; Kao, D.; Chiang, M.; Sabharwal, A. An axiomatic theory of fairness in network resource allocation. In Proceedings of the IEEE INFOCOM, San Diego, CA, USA, 14–19 March 2010; pp. 1–9. [Google Scholar]
- Jain, R.; Durresi, A.; Babic, G. Throughput Fairness Index: An Explanation. ATM Forum/99-0045. February 1999. Available online: https://www.cse.wustl.edu/~jain/atmf/atm99-0045.htm (accessed on 20 March 2019).
- Zabini, F.; Bazzi, A.; Masini, B.M.; Verdone, R. Optimal performance versus fairness tradeoff for resource allocation in wireless systems. IEEE Trans. Wirel. Commun. 2017, 16, 2587–2600. [Google Scholar] [CrossRef]
- Zabini, F.; Bazzi, A.; Masini, B.M. Throughput versus fairness tradeoff analysis. In Proceedings of the 2013 IEEE International Conference on Communications (ICC), Budapest, Hungary, 9–13 June 2013; pp. 5131–5136. [Google Scholar]
- Tuysuz, M.F. An energy-efficient QoS-based network selection scheme over heterogeneous WLAN–3G networks. Comput. Netw. 2014, 75, 113–133. [Google Scholar] [CrossRef]
- Keeler, H.P.; Błaszczyszyn, B.; Karray, M.K. SINR-based k-coverage probability in cellular networks with arbitrary shadowing. In Proceedings of the 2013 IEEE International Symposium on Information Theory Proceedings (ISIT), Istanbul, Turkey, 7–12 July 2013; pp. 1167–1171. [Google Scholar]
- Ganti, R.K.; Haenggi, M. Interference and outage in clustered wireless ad hoc networks. IEEE Trans. Inf. Theory 2009, 55, 4067–4086. [Google Scholar] [CrossRef]
- Deng, N.; Zhou, W.; Haenggi, M. The Ginibre Point Process as a Model for Wireless Networks with Repulsion. IEEE Trans. Wirel. Commun. 2015, 14, 107–121. [Google Scholar] [CrossRef]
- Zabini, F.; Conti, A. Ginibre sampling and signal reconstruction. In Proceedings of the 2016 IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, 10–15 July 2016; pp. 865–869. [Google Scholar]
- Zabini, F.; Pasolini, G.; Conti, A. On random sampling with nodes attraction: The case of Gauss-Poisson process. In Proceedings of the 2017 IEEE International Symposium on Information Theory (ISIT), Aachen, Germany, 25–30 June 2017; pp. 2278–2282. [Google Scholar]
Ref. | Control | Environment | HetNet | Fairness |
---|---|---|---|---|
[17] | Distributed | Static | Yes | High |
[19] | Distributed | Dynamic | Yes | High |
[20] | Distributed | Dynamic | Yes | Moderate |
[24] | Centralized | Static | Yes | - |
[25] | Centralized | Static | Yes | High |
[29] | Distributed | Dynamic | Yes | High |
[26] | Centralized | Static | Yes | High |
[27] | Centralized | Static | Yes | - |
[30] | Distributed | Dynamic | Yes | - |
[31] | Distributed | Static | No | - |
[32] | Distributed | Static | No | - |
[33] | Distributed | Static | Yes | High |
[34] | Distributed | Static | No | - |
[35] | Distributed | Static | Yes | - |
[36] | Distributed | Dynamic | Yes | - |
[37] | Distributed | Static | Yes | High |
[39] | Distributed | Dynamic | Yes | - |
[40] | Distributed | Static | Yes | - |
[41] | Distributed | Static | Yes | High |
[42] | Distributed | Static | Yes | - |
[43] | Distributed | Static | Yes | - |
[45] | Centralized | Dynamic | Yes | High |
Notation | Description |
---|---|
Set of tiers | |
Set of BSs | |
Set of UEs | |
Number of BSs in the network | |
Number of UEs in the network | |
Current of BS j belongs to kth tier | |
Current of BS j belongs to kth tier | |
Transmission power of a BS j belongs to the kth tier | |
from BS j of tier k to UE i | |
Noise power level | |
W | Bandwidth |
Instantaneous rate from BS j of tier k to UE i | |
Actual experienced data rate from BS j of tier k to UE i | |
UE and BS association indicator | |
Set of UEs attached to BS j of tier k | |
Set of BSs the UE i can associate with | |
Utility of UE i from BS j of tier k | |
Utility of BS j of tier k | |
Set of UEs that the BS j of tier k can be associated with | |
Association parameter calculated by UE i considering BS j of tier k | |
Probability of association calculated by UE i considering BS j of tier k |
Different Combinations of d | Average Jain’s Fairness | Total Number of Probe |
---|---|---|
d1 = 2, d2 = 2 | 0.9985 | 4 |
d1 = 2, d2 = 3 | 0.9995 | 5 |
d1 = 2, d2 = 4 | 0.9997 | 6 |
d1 = 3, d2 = 2 | 0.9985 | 5 |
d1 = 3, d2 = 3 | 0.9984 | 6 |
d1 = 3, d2 = 4 | 0.9998 | 7 |
d1 = 4, d2 = 4 (optimal case) | 1 | 14 |
Algorithm | Association Rule | Time Complexity | Scheme |
---|---|---|---|
1 | Centralized | ; U is the total number of UEs in the network | Greedy based |
2 | Distributed | ; C is the average number of BSs a UE can access to | Probability based |
3 | Distributed | O (+); and are the number of choices in the two levels | d-choices based |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bikram Kumar, B.; Sharma, L.; Wu, S.-L. Online Distributed User Association for Heterogeneous Radio Access Network. Sensors 2019, 19, 1412. https://doi.org/10.3390/s19061412
Bikram Kumar B, Sharma L, Wu S-L. Online Distributed User Association for Heterogeneous Radio Access Network. Sensors. 2019; 19(6):1412. https://doi.org/10.3390/s19061412
Chicago/Turabian StyleBikram Kumar, B., Lokesh Sharma, and Shih-Lin Wu. 2019. "Online Distributed User Association for Heterogeneous Radio Access Network" Sensors 19, no. 6: 1412. https://doi.org/10.3390/s19061412
APA StyleBikram Kumar, B., Sharma, L., & Wu, S. -L. (2019). Online Distributed User Association for Heterogeneous Radio Access Network. Sensors, 19(6), 1412. https://doi.org/10.3390/s19061412