Design of a Wearable 12-Lead Noncontact Electrocardiogram Monitoring System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fundamental Theory of Noncontact Electrode
2.2. Measurement of Standard 12-Lead Electrocardiogram
3. Design and Implementation of Wearable 12-Lead ECG Monitoring System
4. Results
4.1. Electrical Specifications of Noncontact Electrodes
4.2. ECG Signal Quality of Wearable 12-Lead ECG Monitoring System under Different Conditions
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Searle, A.; Kirkup, L. A direct comparison of wet, dry and insulating bioelectric recording electrodes. Physiol. Meas. 2000, 21, 271–283. [Google Scholar] [CrossRef]
- Griss, P.; Enoksson, P.; Tolvanen-Laakso, H.K.; Merilainen, P.; Ollmar, S.; Stemme, G. Micromachined electrodes for biopotential measurements. J. Microelectromech. Syst. 2001, 10, 10–16. [Google Scholar] [CrossRef]
- Oh, T.I.; Yoon, S.; Kim, T.E.; Wi, H.; Kim, K.J.; Woo, E.J.; Sadleir, R.J. Nanofiber web textile dry electrodes for long-term biopotential recording. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 204–211. [Google Scholar] [PubMed]
- Taji, B.; Shirmohammadi, S.; Groza, V.; Batkin, I. Impact of skin–electrode interface on electrocardiogram measurements using conductive textile electrodes. IEEE Trans. Instrum. Meas. 2014, 63, 1412–1422. [Google Scholar] [CrossRef]
- Yokus, M.A.; Jur, J.S. Fabric-based wearable dry electrodes for body surface biopotential recording. IEEE Trans. Biomed. Eng. 2016, 63, 423–430. [Google Scholar] [CrossRef]
- Abu-Saude, M.J.; Morshed, B.I. Patterned Vertical Carbon Nanotube Dry Electrodes for Impedimetric Sensing and Stimulation. IEEE Sensors J. 2015, 15, 5851–5858. [Google Scholar] [CrossRef]
- Wang, L.-F.; Liu, J.-Q.; Yang, B.; Yang, C.-S. PDMS-based low cost flexible dry electrode for long-term EEG measurement. IEEE Sensors J. 2012, 12, 2898–2904. [Google Scholar] [CrossRef]
- Chen, Y.; Atnafu, A.D.; Schlattner, I.; Weldtsadik, W.T.; Roh, M.-C.; Kim, H.J.; Lee, S.-W.; Blankertz, B.; Fazli, S. A high-security EEG-based login system with RSVP stimuli and dry electrodes. IEEE Trans. Inf. Forensics Secur. 2016, 11, 2635–2647. [Google Scholar] [CrossRef]
- Ueno, A.; Akabane, Y.; Kato, T.; Hoshino, H.; Kataoka, S.; Ishiyama, Y. Capacitive sensing of electrocardiographic potential through cloth from the dorsal surface of the body in a supine position: A preliminary study. IEEE Trans. Biomed. Eng. 2007, 54, 759–766. [Google Scholar] [CrossRef]
- Pei, W.; Zhang, H.; Wang, Y.; Guo, X.; Xing, X.; Huang, Y.; Xie, Y.; Yang, X.; Chen, H. Skin-potential variation insensitive dry electrodes for ECG recording. IEEE Trans. Biomed. Eng. 2017, 64, 463–470. [Google Scholar] [CrossRef]
- Huang, Y.-J.; Wu, C.-Y.; Wong, A.M.-K.; Lin, B.-S. Novel active comb-shaped dry electrode for EEG measurement in hairy site. IEEE Trans. Biomed. Eng. 2015, 62, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Laferriere, P.; Lemaire, E.D.; Chan, A.D. Surface electromyographic signals using dry electrodes. IEEE Trans. Instrum. Meas. 2011, 60, 3259–3268. [Google Scholar] [CrossRef]
- Ribeiro, D.M.D.; Fu, L.S.; Carlos, L.A.D.; Cunha, J.P.S. A novel dry active biosignal electrode based on an hybrid organic-inorganic interface material. IEEE Sensors J. 2011, 11, 2241–2245. [Google Scholar] [CrossRef]
- Chi, Y.M.; Jung, T.-P.; Cauwenberghs, G. Dry-contact and noncontact biopotential electrodes: Methodological review. IEEE Rev. Biomed. Eng. 2010, 3, 106–119. [Google Scholar] [CrossRef]
- Yang, B.; Yu, C.; Dong, Y. Capacitively coupled electrocardiogram measuring system and noise reduction by singular spectrum analysis. IEEE Sensors J. 2016, 16, 3802–3810. [Google Scholar] [CrossRef]
- Zhou, W.; Song, R.; Pan, X.; Peng, Y.; Qi, X.; Peng, J.; Hui, K.; Hui, K. Fabrication and impedance measurement of novel metal dry bioelectrode. Sens. Actuators A Phys. 2013, 201, 127–133. [Google Scholar] [CrossRef]
- Jung, H.-C.; Moon, J.-H.; Baek, D.-H.; Lee, J.-H.; Choi, Y.-Y.; Hong, J.-S.; Lee, S.-H. CNT/PDMS composite flexible dry electrodesfor long-term ECG monitoring. IEEE Trans. Biomed. Eng. 2012, 59, 1472–1479. [Google Scholar] [CrossRef]
- Lin, C.-T.; Liao, L.-D.; Liu, Y.-H.; Wang, I.-J.; Lin, B.-S.; Chang, J.-Y. Novel dry polymer foam electrodes for long-term EEG measurement. IEEE Trans. Biomed. Eng. 2011, 58, 1200–1207. [Google Scholar]
- Tseng, K.C.; Lin, B.-S.; Liao, L.-D.; Wang, Y.-T.; Wang, Y.-L. Development of a wearable mobile electrocardiogram monitoring system by using novel dry foam electrodes. IEEE Syst. J. 2014, 8, 900–906. [Google Scholar] [CrossRef]
- Lin, B.-S.; Chou, W.; Wang, H.-Y.; Huang, Y.-J.; Pan, J.-S. Development of novel non-contact electrodes for mobile electrocardiogram monitoring system. IEEE J. Transl. Eng. Health Med. 2013, 1. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Lin, B.-S.; Pan, J.-S. Novel noncontact dry electrode with adaptive mechanical design for measuring EEG in a hairy site. IEEE Trans. Instrum. Meas. 2015, 64, 3361–3368. [Google Scholar] [CrossRef]
- De Winter, R.J.; Tijssen, J.G. Non–ST-Segment Elevation Myocardial Infarction. JACC Cardiovasc. Interv. 2012, 5, 903–905. [Google Scholar] [CrossRef] [PubMed]
- Murray, A.; Jordan, R.S.; Gold, R.G. Pacemaker assessment in the ambulant patient. Heart 1981, 46, 531–538. [Google Scholar] [CrossRef]
- Talbi, M.L.; Charef, A. PVC discrimination using the QRS power spectrum and self-organizing maps. Comput. Methods Programs. Biomed. 2009, 94, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Pei, W.; Chen, Y.; Guo, X.; Wu, X.; Yang, X.; Chen, H. A motion interference-insensitive flexible dry electrode. IEEE Trans. Biomed. Eng. 2016, 63, 1136–1144. [Google Scholar] [CrossRef] [PubMed]
- Weder, M.; Hegemann, D.; Amberg, M.; Hess, M.; Boesel, L.F.; Abächerli, R.; Meyer, V.R.; Rossi, R.M. Embroidered electrode with silver/titanium coating for long-term ECG monitoring. Sensors 2015, 15, 1750–1759. [Google Scholar] [CrossRef]
- Liao, L.-D.; Wang, I.-J.; Chen, S.-F.; Chang, J.-Y.; Lin, C.-T. Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation. Sensors 2011, 11, 5819–5834. [Google Scholar] [CrossRef]
- Castro, I.D.; Varon, C.; Torfs, T.; Huffel, S.V.; Puers, R.; Hoof, C.V. Evaluation of a multichannel non-contact ECG system and signal quality algorithms for sleep apnea detection and monitoring. Sensors 2018, 18, 577. [Google Scholar] [CrossRef]
- Boehm, A.; Yu, X.; Neu, W.; Leonhardt, S.; Teichmann, D. A novel 12-lead ECG T-shirt with active electrodes. Electronics 2016, 5, 75. [Google Scholar] [CrossRef]
- Tada, Y.; Amano, Y.; Sato, T.; Saito, S.; Inoue, M. A smart shirt made with conductive ink and conductive foam for the measurement of electrocardiogram signals with unipolar precordial leads. Fibers 2015, 3, 463–477. [Google Scholar] [CrossRef]
Zhang et al. [25] | Weder et al. [26] | Liao et al. [27] | Castro et al. [28] | Proposed Electrode | |
---|---|---|---|---|---|
Area of electrode (cm2) | 1.44 | 14 | 1.69 | - | 6.16 |
Frequency band (Hz) | 0.5–50 | - | - | 0.5–40 | 0.1–100 |
Input-referred noise (V/Hz) | - | - | - | - | 6 × 10−5 |
Electrode material | PEDOT/PSS | Ag/Ti | Gold, copper | Ag/AgCl | Copper |
Noncontact electrode | No | No | No | Noncontact | Noncontact |
Advantages | Excellent flexibility and conductivity, measurement under motion | Good biocompatibility and conductivity | Measurement in hairy site | Good measurement under slight motion (e.g., sleep) | Excellent flexibility, noncontact measurement under motion |
Affecting factors | Influence of sweating | Influence of body hairs | Poor skin-electrode interface impedance | Not verified and guaranteed under motion | Thickness of clothing |
Anna Boehm et al. [29] | Yasunori Tada et al. [30] | Proposed System | |
---|---|---|---|
Operation voltage | 3.3 V | - | 3.3 V |
Amplifier gain | - | - | 400 V/V |
System of size | 70 × 65 | 90 × 28 | 25 × 65 |
Signal resolution | 24 bits | - | 12 bits |
Frequency band (Hz) | 2–20 Hz | - | 0.1–100 Hz |
Wireless transmission | - | XBee | Bluetooth |
Power consumption | 260 mW | - | 150 mW |
Advantages | Wearability, long-term monitoring | Wearability, measurement under motion | Wearability, noncontact measurement under motion |
Affecting factors | Influence of motion | Influence of body hairs | Thickness of clothing |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, C.-C.; Lin, B.-S.; He, K.-Y.; Lin, B.-S. Design of a Wearable 12-Lead Noncontact Electrocardiogram Monitoring System. Sensors 2019, 19, 1509. https://doi.org/10.3390/s19071509
Hsu C-C, Lin B-S, He K-Y, Lin B-S. Design of a Wearable 12-Lead Noncontact Electrocardiogram Monitoring System. Sensors. 2019; 19(7):1509. https://doi.org/10.3390/s19071509
Chicago/Turabian StyleHsu, Chien-Chin, Bor-Shing Lin, Ke-Yi He, and Bor-Shyh Lin. 2019. "Design of a Wearable 12-Lead Noncontact Electrocardiogram Monitoring System" Sensors 19, no. 7: 1509. https://doi.org/10.3390/s19071509
APA StyleHsu, C. -C., Lin, B. -S., He, K. -Y., & Lin, B. -S. (2019). Design of a Wearable 12-Lead Noncontact Electrocardiogram Monitoring System. Sensors, 19(7), 1509. https://doi.org/10.3390/s19071509