Ground Reaction Forces and Kinematics of Ski Jump Landing Using Wearable Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study I
2.2. Study II
2.3. Statistical Analysis
3. Results
3.1. Study I
3.2. Study II
4. Discussion
4.1. Study I
4.2. Study II
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Schwameder, H. Biomechanics research in ski jumping, 1991–2006. Sports Biomech. 2008, 7, 114–136. [Google Scholar] [CrossRef] [PubMed]
- Bessone, V. Research outcomes vs. Athletes’ feelings during ski jump landing. In Proceedings of the European College of Sport Science, Dublin, Ireland, 4–7 July 2018. [Google Scholar]
- Ward-Smith, A.; Clements, D. Experimental determination of the aerodynamic characteristics of ski jumpers. Aeronaut. J. 1982, 86, 384–391. [Google Scholar] [CrossRef]
- Schwameder, H.; Müller, E. Biomechanische Beschreibung und Analyse der V-Technik im Skispringen. Available online: https://www.researchgate.net/profile/Hermann_Schwameder/publication/242339639_Biomechanische_Beschreibung_und_Analyse_der_V-Technik_im_Skispringen/links/57172cf308aeefeb022c4334.pdf (accessed on 28 April 2019).
- Hochmuth, G. Telemark Landing. FIS Bull. 1999, 137, 29–43. [Google Scholar]
- Seo, K.; Watanabe, T.; Igarashi, M.; Kimura, S.; Murakami, M. Aerodynamic Study for the Ground Effect of Ski Jumping. Available online: https://ojs.ub.uni-konstanz.de/cpa/article/view/3835 (accessed on 28 April 2019).
- Greimel, F.; Virmavirta, M.; Schwameder, H. Kinematic analysis of the landing phase in ski jumping. In Science and Skiing IV; Müller, E., Lindinger, S., Stöggl, T., Eds.; Meyer and Meyer Sport: Aachen, Germany, 2009; pp. 721–727. ISBN 978-1-84126-255-0. [Google Scholar]
- FIS International Competition Rules (ICR) Ski Jumping. Available online: http://www.fis-ski.com/inside-fis/document-library/ski-jumping/index.html#deeplink=rules (accessed on 10 January 2019).
- Dufek, J.S.; Bates, B.T. Biomechanical factors associated with injury during landing in jump sports. Sports Med. 1991, 12, 326–337. [Google Scholar] [CrossRef] [PubMed]
- Hewett, T.E.; Stroup, A.L.; Nacne, T.A.; Noyes, F.R. Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am. J. Sports Med. 1996, 24, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S.; Colosimo, A.J.; McLean, S.G.; Succop, P. Biomechanical Measures of Neuromuscular Control and Valgus Loading of the Knee Predict Anterior Cruciate Ligament Injury Risk in Female Athletes: A Prospective Study. Am. J. Sports Med. 2005, 33, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Garrett, W.E. Mechanisms of non-contact ACL injuries. Br. J. Sports Med. 2007, 41, i47–i51. [Google Scholar] [CrossRef]
- Flørenes, T.W.; Nordsletten, L.; Heir, S.; Bahr, R. Injuries among World Cup ski and snowboard athletes. Scand. J. Med. Sci. Sports 2010, 22, 58–66. [Google Scholar] [CrossRef]
- Hewett, T.E.; Sultz, S.J.; Griffin, L.Y. Understanding and Preventing Noncontact ACL Injuries. Available online: http://www.marylloydireland.com/PPT_PDF_V/2007_Ch13_Sports_Specific_Injury_Mechanisms_Assoc_with_Pivoting_Cutting_and_Landing.pdf (accessed on 28 April 2019).
- Louw, Q.; Grimmer, K. Biomechanical factors associated with the risk of knee injury when landing from a jump. S. Afr. J. Sports Med. 2006, 18, 18–23. [Google Scholar] [CrossRef]
- Ortega, D.R.; Bies, E.C.; Berral de la Rosa, F.J. Analysis of the vertical ground reaction forces and temporal factors in the landing phase of a countermovement jump. J. Sports Sci. Med. 2010, 9, 282–287. [Google Scholar] [PubMed]
- Hagins, M.-; Pappas, E.; Kremenic, I.; Orishimo, K.F.; Rundle, A. The effect of an inclined landing surface on biomechanical variables during a jumping task. Clin. Biomech. 2007, 22, 1030–1036. [Google Scholar] [CrossRef] [PubMed]
- Boden, B.P.; Torg, J.S.; Knowles, S.B.; Hewett, T.E. Video analysis of anterior cruciate ligament injury: Abnormalities in hip and ankle kinematics. Am. J. Sports Med. 2009, 37, 252–259. [Google Scholar] [CrossRef]
- Boden, B.P.; Sheehan, F.T.; Torg, J.S.; Hewett, T.E. Noncontact anterior cruciate ligament injuries: mechanisms and risk factors. J. Am. Acad. Orthop. Surg. 2010, 18, 520–527. [Google Scholar] [CrossRef]
- Babiel, S.; Hartmann, U.; Spitzenpfeil, P.; Mester, J. Ground-reaction forces in alpine skiing, cross-country skiing and ski jumping. In Science and Skiing III; Kornexl, E., Müller, E., Raschner, H., Schwameder, H., Eds.; Meyer and Meyer Sport: Aachen, Germany, 1997; pp. 200–207. ISBN 9781841261775. [Google Scholar]
- Virmavirta, M.; Komi, P.V. Plantar pressures during ski jumping take-off. J. Appl. Biomech. 2000, 16, 320–326. [Google Scholar] [CrossRef]
- Virmavirta, M.; Perttunen, J.; Komi, P.V. EMG activities and plantar pressures during ski jumping take-off on three different sized hills. J. Electromyogr. Kinesiol. 2001, 11, 141–147. [Google Scholar] [CrossRef]
- Groh, B.J.; Fritz, J.; Deininger, M.; Schwameder, H.; Eskofier, B.M. Unobstrusive and wearable landing momentum estimation in ski jumping with inertial-magnetic sensors. In Proceedings of the 15th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Las Vegas, NV, USA, 4–7 March 2018. [Google Scholar]
- Virmavirta, M.; Komi, P.V. The takeoff forces in ski jumping. Int. J. Sports Biomech. 1989, 5, 248–257. [Google Scholar] [CrossRef]
- Virmavirta, M.; Komi, P.V. Electromyographic analysis of muscle activation during ski jumping performance. Sports Biomech. 1991, 7, 175–182. [Google Scholar] [CrossRef]
- Virmavirta, M.; Komi, P.V. Measurement of take-off forces in ski jumping Part I. Scand. J. Med. Sci. Sports 1993, 3, 229–236. [Google Scholar] [CrossRef]
- Virmavirta, M.; Komi, P.V. Measurement of take-off forces in ski jumping. Part II. Scand. J. Med. Sci. Sports 1993, 3, 237–243. [Google Scholar] [CrossRef]
- Stöggl, T.; Martiner, A. Validation of Moticon’s OpenGo sensor insoles during gait, jumps, balance and cross-country skiing specific imitation movements. J. Sports Sci. 2017, 35, 196–206. [Google Scholar] [CrossRef]
- Burns, T.B.; Zendler, J.D.; Zernicke, R.F. Validation of a wireless shoe insole for ground reaction force measurement. J. Sports Sci. 2018, 14, 1–10. [Google Scholar] [CrossRef]
- Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. In-field use of wearable magneto-inertial sensors for sports performance evaluation. In Proceedings of the 33rd International Conference on Biomechanics in Sports, Poitiers, France, 29 June–3 July 2015. [Google Scholar]
- Chardonnens, J.; Favre, J.; Aminian, K. An effortless procedure to align the local frame of an inertial measurement unit to the local frame another motion capture system. J. Biomech. 2012, 45, 2297–2300. [Google Scholar] [CrossRef]
- Chardonnens, J.; Favre, J.; Cuendet, F.; Grémion, G.; Aminian, K. A system to measure the kinematics during the entire jump sequence using inertial sensors. J. Biomech. 2013, 46, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Brock, H.; Ohgi, Y. Development of an inertial motion capture system for kinematic analysis of ski jumping. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2016. [Google Scholar] [CrossRef]
- Logar, G.; Munih, M. Estimation of joint forces and moments for the in-run and take-off in ski jumping based on measurements with wearable inertial sensors. Sensors 2015, 15, 11258–11276. [Google Scholar] [CrossRef] [PubMed]
- Bessone, V.; Petrat, J.; Seiberl, W.; Schwirtz, A. Analysis of Landing in Ski Jumping by Means of Inertial Sensors and Force Insoles. Proceedings 2018, 2, 311. [Google Scholar] [CrossRef]
- Loadsol—Mobile Force Sensor. Available online: http://novel.de/novelcontent/loadsol (accessed on 19 February 2019).
- Peeble, A.T.; Maguire, L.A.; Renner, R.K.; Queen, R.M. Validity and Repeatability of Single-Sensor Loadsol Insoles during Landing. Sensors 2018, 18, 4082. [Google Scholar] [CrossRef] [PubMed]
- Seiberl, W.; Jensen, E.; Merker, J.; Leitel, M.; Schwirtz, A. Accuracy and precision of loadsol® insole force-sensors for the quantification of ground reaction force-based biomechanical running parameters. Eur. J. Sport Sci. 2018, 18, 1100–1109. [Google Scholar] [CrossRef]
- Renner, R.K.; Williams, B.D.S.; Queen, R.M. The Reliability and Validity of the Loadsol® under Various Walking and Running Conditions. Sensors 2019, 19, 265. [Google Scholar] [CrossRef]
- Blazkiewicz, M.; Wiszomirska, I.; Wit, A. Comparison of four methods of calculating the symmetry of spatial-temporal parameters of gait. Acta Bioeng. Biomech. 2014, 16, 29–35. [Google Scholar]
- Croisier, J.L.; Ganteaume, S.; Binet, J.; Genty, M.; Ferret, J.M. Strength imbalances and prevention of hamstring injury in professional soccer players: a prospective study. Am. J. Sports Med. 2008, 36, 1469–1475. [Google Scholar] [CrossRef]
- Menzel, H.J.K.; Chagas, M.H.; Szmuchrowski, L.A.; Araújo, S.R.S.; Andrade, A.G.P.; Moraleida, F. Analysis of Lower Limb Asymmetries by Isokinetic and Vertical Jump Tests in Soccer Player. J. Strength Cond. Res. 2013, 27, 1370–1377. [Google Scholar] [CrossRef]
- Bessone, V.; Höschele, N.; Schwirtz, A.; Seiberl, W. Validation of a new inertial measurement units system based on different dynamic movements for future in-field applications. Sports Biomech. (submitted).
- Ski Jumping Hill Archive. Available online: http://www.skisprungschanzen.com/EN/Ski+Jumps/ (accessed on 23 September 2017).
- Leissing, S.K.; Petushek, E.J.; Stephenson, M.L.; Jensen, R.L. Relationship of ground and knee joint reaction forces in plyometric exercises. In Proceedings of the International society of Biomechanics in Sport, Marquette, MI, USA, 19–23 July 2010. [Google Scholar]
- Bates, N.A.; Ford, K.R.; Myer, G.D.; Hewett, T.E. Impact differences in ground reaction force and center of mass between the first and second landing phases of a drop vertical jump and their implications for injury risk assessment. J. Biomech. 2013, 46, 1237–1241. [Google Scholar] [CrossRef]
- Heinrich, D.; van den Bogert, A.J.; Nachbauer, W. Relationship between jump landing kinematics and peak ACL force during a jump in downhill skiing: A simulation study. Scand. J. Med. Sci. Sports 2014, 24, 180–187. [Google Scholar] [CrossRef]
- Pappas, E.; Carpes, F.P. Lower extremity kinematic asymmetry in male and female athletes performing jump-landing tasks. J. Sci. Med. Sport 2012, 15, 87–92. [Google Scholar] [CrossRef]
- Marinsek, M. Basic landing characteristics and their application in artistic gymnastics. Basic landing characteristics and their implication. Sci. Gymnast. J. 2010, 2, 59–67. [Google Scholar]
- Ford, K.R.; Myer, G.D.; Smith, R.L.; Vianello, R.M.; Seiwert, S.L.; Hewett, T.E. A comparison of dynamic coronal plane excursion between matched male and female athletes when performing single leg landings. Clin. Biomech. 2006, 21, 33–40. [Google Scholar] [CrossRef]
- Braun, H.J.; Shultz, R.; Malone, M.; Leatherwood, W.E.; Silder, A.; Dragoo, J.L. Differences in ACL biomechanical risk factors between field hockey and lacrosse female athletes. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 1065–1070. [Google Scholar] [CrossRef]
tflight | tlanding | |
---|---|---|
Fmax | left: r = 0.481 ***; right: r = 0.469 *** | |
I | left: r = 0.552 ***; right: r = 0.538 *** | right: r = −0.263 ** |
Parallel Leg | Telemark | |
---|---|---|
Number of jumps | 26 | 56 |
GRFmax SI between sides [%] | 24 ± 13 | 26 ± 21 |
I SI between sides [%] | 15 ± 8 | 24 ± 17 |
I distribution on the rear foot [%] | 56 ± 19 | bl: 52 ± 25 (n = 55); fl: 48 ± 17 |
Ramsau am D. | Oberstdorf | Oberhof | |
---|---|---|---|
Incline of the landing area | 36° | 35.5° | 35° |
GRFmax (left) | r = 0.517; p = 0.007 | r = 0.363; p = 0.025 | r = 0.597; p < 0.001 |
GRFmax (right) | r = 0.637; p < 0.001 | r = 0.400; p = 0.013 | r = 0.545; p < 0.001 |
I (left) | r = 0.342; p = 0.095 | r = 0.554; p < 0.001 | r = 0.651; p < 0.001 |
I (right) | r = 0.448; p = 0.022 | r = 0.695; p < 0.001 | r = 0.465; p = 0.004 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bessone, V.; Petrat, J.; Schwirtz, A. Ground Reaction Forces and Kinematics of Ski Jump Landing Using Wearable Sensors. Sensors 2019, 19, 2011. https://doi.org/10.3390/s19092011
Bessone V, Petrat J, Schwirtz A. Ground Reaction Forces and Kinematics of Ski Jump Landing Using Wearable Sensors. Sensors. 2019; 19(9):2011. https://doi.org/10.3390/s19092011
Chicago/Turabian StyleBessone, Veronica, Johannes Petrat, and Ansgar Schwirtz. 2019. "Ground Reaction Forces and Kinematics of Ski Jump Landing Using Wearable Sensors" Sensors 19, no. 9: 2011. https://doi.org/10.3390/s19092011
APA StyleBessone, V., Petrat, J., & Schwirtz, A. (2019). Ground Reaction Forces and Kinematics of Ski Jump Landing Using Wearable Sensors. Sensors, 19(9), 2011. https://doi.org/10.3390/s19092011