Pyroelectric Energy Conversion and Its Applications—Flexible Energy Harvesters and Sensors
Abstract
:1. Introduction
2. Theory of Pyroelectricity
2.1. Concept of Pyroelectricity
2.2. Figure of Merit
3. Pyroelectricity in Ferroelectric Materials
3.1. Cycles of Pyroelectric Energy Harvesting
3.1.1. Carnot Cycle
3.1.2. Ericson Cycle
3.1.3. Olsen Cycle
3.2. Pyroelectric Materials
3.2.1. Lead-Free Pyroelectric Materials
3.2.2. Lead-Based Pyroelectric Materials
4. Application of Pyroelectricity for Flexible Devices
4.1. Flexible Energy Harvesters
4.2. Hybrid Harvester with Pyroelectric Materials (Nano-Generators)
4.3. Flexible Sensors
5. Conclusions and Future Outlooks
Author Contributions
Funding
Conflicts of Interest
References
- Annapureddy, V.; Kim, M.; Palneedi, H.; Lee, H.-Y.; Choi, S.-Y.; Yoon, W.-H.; Park, D.-S.; Choi, J.-J.; Hahn, B.-D.; Ahn, C.-W.; et al. Low-Loss Piezoelectric Single-Crystal Fibers for Enhanced Magnetic Energy Harvesting with Magnetoelectric Composite. Adv. Energy Mater. 2016, 6, 1601244. [Google Scholar] [CrossRef]
- Priya, S.; Song, H.-C.; Zhou, Y.; Varghese, R.; Chopra, A.; Kim, S.-G.; Kanno, I.; Wu, L.; Ha, D.S.; Ryu, J.; et al. A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits. Energy Harvest. Syst. 2017, 4, 3–39. [Google Scholar] [CrossRef]
- Annapureddy, V.; Palneedi, H.; Hwang, G.-T.; Peddigari, M.; Jeong, D.-Y.; Yoon, W.-H.; Kim, K.-H.; Ryu, J. Magnetic energy harvesting with magnetoelectrics: an emerging technology for self-powered autonomous systems. Sustain. Energy Fuels 2017, 1, 2039–2052. [Google Scholar] [CrossRef]
- Annapureddy, V.; Na, S.-M.; Hwang, G.-T.; Kang, M.G.; Sriramdas, R.; Palneedi, H.; Yoon, W.-H.; Hahn, B.-D.; Kim, J.-W.; Ahn, C.-W.; et al. Exceeding milli-watt powering magneto-mechano-electric generator for standalone-powered electronics. Energy Environ. Sci. 2018, 11, 818–829. [Google Scholar] [CrossRef]
- Maurya, D.; Peddigari, M.; Kang, M.-G.; Geng, L.D.; Sharpes, N.; Annapureddy, V.; Palneedi, H.; Sriramdas, R.; Yan, Y.; Song, H.-C.; et al. Lead-free piezoelectric materials and composites for high power density energy harvesting. J. Mater. Res. 2018, 33, 2235–2263. [Google Scholar] [CrossRef]
- Kang, M.G.; Sriramdas, R.; Lee, H.; Chun, J.; Maurya, D.; Hwang, G.T.; Ryu, J.; Priya, S. High Power Magnetic Field Energy Harvesting through Amplified Magneto-Mechanical Vibration. Adv. Energy Mater. 2018, 8, 1703313. [Google Scholar] [CrossRef]
- Peddigari, M.; Lim, K.-W.; Kim, M.; Park, C.H.; Yoon, W.-H.; Hwang, G.-T.; Ryu, J. Effect of elastic modulus of cantilever beam on the performance of unimorph type piezoelectric energy harvester. APL Mater. 2018, 6, 121107. [Google Scholar] [CrossRef]
- Lim, K.-W.; Peddigari, M.; Park, C.H.; Lee, H.Y.; Min, Y.; Kim, J.-W.; Ahn, C.-W.; Choi, J.-J.; Hahn, B.-D.; Choi, J.-H.; et al. A high output magneto-mechano-triboelectric generator enabled by accelerated water-soluble nano-bullets for powering a wireless indoor positioning system. Energy Environ. Sci. 2019, 12, 666–674. [Google Scholar] [CrossRef]
- Song, H.-C.; Kumar, P.; Maurya, D.; Kang, M.-G.; Reynolds, W.T.; Jeong, D.-Y.; Kang, C.-Y.; Priya, S. Ultra-Low Resonant Piezoelectric MEMS Energy Harvester With High Power Density. J. Microelectromechanical. Syst. 2017, 26, 1226–1234. [Google Scholar] [CrossRef]
- Song, H.-C.; Kumar, P.; Sriramdas, R.; Lee, H.; Sharpes, N.; Kang, M.-G.; Maurya, D.; Sanghadasa, M.; Kang, H.-W.; Ryu, J.; et al. Broadband dual phase energy harvester: Vibration and magnetic field. Appl. Energy 2018, 225, 1132–1142. [Google Scholar] [CrossRef]
- Kishore, R.A.; Priya, S. A Review on low-grade thermal energy harvesting: Materials, methods and devices. Materials 2018, 11, 1433. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.; Kang, J.E.; Zhou, Y.; Choi, S.Y.; Yoon, W.H.; Park, D.S.; Choi, J.J.; Hahn, B.D.; Ahn, C.W.; Kim, J.W.; et al. Ubiquitous magneto-mechano-electric generator. Energy Environ. Sci. 2015, 8, 2402–2408. [Google Scholar] [CrossRef]
- Devabhaktuni, V.; Alam, M.; Shekara Sreenadh Reddy Depuru, S.; Green, R.C.; Nims, D.; Near, C. Solar energy: Trends and enabling technologies. Renew. Sustain. Energy Rev. 2013, 19, 555–564. [Google Scholar] [CrossRef]
- Hunter, S.R.; Lavrik, N.V.; Mostafa, S.; Rajic, S.; Datskos, P.G. Review of pyroelectric thermal energy harvesting and new MEMS-based resonant energy conversion techniques. In Proceedings of the International Society for Optics and Photonics; International Society for Optics and Photonics, Baltimore, MD, USA, 24 May 2012; Volume 8377. [Google Scholar]
- Goldsmid, H.J. Principles of thermoelectric devices. Br. J. Appl. Phys. 1960, 11, 209–217. [Google Scholar] [CrossRef]
- Lang, S.B. Pyroelectricity: From Ancient Curiosity to Modern Imaging Tool. Phys. Today 2005, 58, 31–36. [Google Scholar] [CrossRef]
- Clingman, W.H.; Moore, R.G. Application of Ferroelectricity to Energy Conversion Processes. J. Appl. Phys. 1961, 32, 675–681. [Google Scholar] [CrossRef]
- Fatuzzo, E.; Kiess, H.; Nitsche, R. Theoretical Efficiency of Pyroelectric Power Converters. J. Appl. Phys. 1966, 37, 510–516. [Google Scholar] [CrossRef]
- Hoh, S.R. Conversion of thermal to electrical energy with ferroelectric materials. Proc. IEEE 1963, 51, 838–845. [Google Scholar] [CrossRef]
- Van der Ziel, A. Solar power generation with the pyroelectric effect. J. Appl. Phys. 1974, 45, 4128. [Google Scholar] [CrossRef]
- Drummond, J.E. Dielectric power conversion. In Proceedings of the 10th Annual Intersociety Energy Conversion and Engineering Conference, Newark, DE, USA, 18–22 August 1975; Rec. (A75-45920 23-44). Institute of Electrical and Electronics Engineers: New York, NY, USA, 1975; pp. 569–575. [Google Scholar]
- Childress, J.D. Application of a Ferroelectric Material in an Energy Conversion Device. J. Appl. Phys. 1962, 33, 1793–1798. [Google Scholar] [CrossRef]
- Drummond, J.E.; Fargo, V.; Ream, J.; Reed, H.; Briscoe, J.M.; Brown, D. Demonstration of a high power density electro-caloric heat engine. Ferroelectrics 1980, 27, 215–218. [Google Scholar] [CrossRef]
- Estimated U.S. Energy Use in 2013: ~97.4 Quads; Lawrence Livermore National Laboratory: Livermore, CA, USA, 2013.
- Annapureddy, V.; Kim, Y.; Hwang, G.-T.; Jang, H.W.; Kim, S.-D.; Choi, J.-J.; Cho, B.; Ryu, J. Room-Temperature Solid-State Grown WO3−δ Film on Plastic Substrate for Extremely Sensitive Flexible NO2 Gas Sensors. Adv. Mater. Interfaces 2018, 5, 1700811. [Google Scholar] [CrossRef]
- Lim, J.; Jung, H.; Baek, C.; Hwang, G.-T.; Ryu, J.; Yoon, D.; Yoo, J.; Park, K.-I.; Kim, J.H. All-inkjet-printed flexible piezoelectric generator made of solvent evaporation assisted BaTiO3 hybrid material. Nano Energy 2017, 41, 337–343. [Google Scholar] [CrossRef]
- Jeong, C.K.; Han, J.H.; Palneedi, H.; Park, H.; Hwang, G.-T.; Joung, B.; Kim, S.-G.; Shin, H.J.; Kang, I.-S.; Ryu, J.; et al. Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film. APL Mater. 2017, 5, 074102. [Google Scholar] [CrossRef] [Green Version]
- Jeong, C.K.; Cho, S.B.; Han, J.H.; Park, D.Y.; Yang, S.; Park, K.-I.; Ryu, J.; Sohn, H.; Chung, Y.-C.; Lee, K.J. Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film. Nano Res. 2017, 10, 437–455. [Google Scholar] [CrossRef]
- Ye, B.U.; Kim, B.-J.; Ryu, J.; Lee, J.Y.; Baik, J.M.; Hong, K. Electrospun ion gel nanofibers for flexible triboelectric nanogenerator: electrochemical effect on output power. Nanoscale 2015, 7, 16189–16194. [Google Scholar] [CrossRef]
- Jeong, C.K.; Lee, J.; Han, S.; Ryu, J.; Hwang, G.-T.; Park, D.Y.; Park, J.H.; Lee, S.S.; Byun, M.; Ko, S.H.; et al. A Hyper-Stretchable Elastic-Composite Energy Harvester. Adv. Mater. 2015, 27, 2866–2875. [Google Scholar] [CrossRef]
- Park, K.-I.; Son, J.H.; Hwang, G.-T.; Jeong, C.K.; Ryu, J.; Koo, M.; Choi, I.; Lee, S.H.; Byun, M.; Wang, Z.L.; et al. Highly-Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates. Adv. Mater. 2014, 26, 2514–2520. [Google Scholar] [CrossRef]
- Jeong, C.K.; Park, K.-I.; Ryu, J.; Hwang, G.-T.; Lee, K.J. Large-Area and Flexible Lead-Free Nanocomposite Generator Using Alkaline Niobate Particles and Metal Nanorod Filler. Adv. Funct. Mater. 2014, 24, 2620–2629. [Google Scholar] [CrossRef]
- Park, K.-I.; Jeong, C.K.; Ryu, J.; Hwang, G.-T.; Lee, K.J. Flexible and Large-Area Nanocomposite Generators Based on Lead Zirconate Titanate Particles and Carbon Nanotubes. Adv. Energy Mater. 2013, 3, 1539–1544. [Google Scholar] [CrossRef]
- Ravindran, S.K.T.; Huesgen, T.; Kroener, M.; Woias, P. A self-sustaining micro thermomechanic-pyroelectric generator. Appl. Phys. Lett. 2011, 99, 104102. [Google Scholar] [CrossRef]
- Cha, G.; Jia, Y.; Ju, Y.S. High-power density pyroelectric energy harvesters incorporating switchable liquid-based thermal interfaces. In Proceedings of the 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), Paris, France, 29 January–2 February 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1241–1244. [Google Scholar]
- Chen, Y.; Zhang, Y.; Yuan, F.; Ding, F.; Schmidt, O.G. A Flexible PMN-PT Ribbon-Based Piezoelectric-Pyroelectric Hybrid Generator for Human-Activity Energy Harvesting and Monitoring. Adv. Electron. Mater. 2017, 3, 1600540. [Google Scholar] [CrossRef] [Green Version]
- You, M.H.; Wang, X.X.; Yan, X.; Zhang, J.; Song, W.Z.; Yu, M.; Fan, Z.Y.; Ramakrishna, S.; Long, Y.Z. A self-powered flexible hybrid piezoelectric-pyroelectric nanogenerator based on non-woven nanofiber membranes. J. Mater. Chem. A 2018, 6, 3500–3509. [Google Scholar] [CrossRef]
- Song, H.-C.; Maurya, D.; Chun, J.; Zhou, Y.; Song, M.-E.; Gray, D.; Yamoah, N.K.; Kumar, D.; McDannald, A.; Jain, M.; et al. Modulated Magneto-Thermal Response of La0.85Sr0.15MnO3 and (Ni0.6Cu0.2Zn0.2)Fe2O4 Composites for Thermal Energy Harvesters. Energy Harvest. Syst. 2017, 4, 57–65. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, Z.; Zhang, S.; Li, X.; Yang, W.; Zhang, H.; Lin, Y.; He, L.; Wu, B.; Su, Y. Flexible pyroelectric generators for scavenging ambient thermal energy and as self-powered thermosensors. Energy 2016, 101, 202–210. [Google Scholar]
- Narita, F.; Fox, M. A Review on Piezoelectric, Magnetostrictive, and Magnetoelectric Materials and Device Technologies for Energy Harvesting Applications. Adv. Eng. Mater. 2018, 20, 1–22. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Zhu, G.; Lee, S.; Lin, Z.-H.; Wang, Z.L. Flexible Hybrid Energy Cell for Simultaneously Harvesting Thermal, Mechanical, and Solar Energies. ACS Nano 2013, 7, 785–790. [Google Scholar] [CrossRef]
- Yang, Y.; Jung, J.H.; Yun, B.K.; Zhang, F.; Pradel, K.C.; Guo, W.; Wang, Z.L. Flexible Pyroelectric Nanogenerators using a Composite Structure of Lead-Free KNbO3 Nanowires. Adv. Mater. 2012, 24, 5357–5362. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lee, K.Y.; Gupta, M.K.; Kim, T.Y.; Lee, D.-Y.; Oh, J.; Ryu, C.; Yoo, W.J.; Kang, C.-Y.; Yoon, S.-J.; et al. Highly Stretchable Piezoelectric-Pyroelectric Hybrid Nanogenerator. Adv. Mater. 2014, 26, 765–769. [Google Scholar] [CrossRef]
- Ko, Y.J.; Kim, D.Y.; Won, S.S.; Ahn, C.W.; Kim, I.W.; Kingon, A.I.; Kim, S.-H.; Ko, J.-H.; Jung, J.H. Flexible Pb(Zr0.52Ti0.48)O3 Films for a Hybrid Piezoelectric-Pyroelectric Nanogenerator under Harsh Environments. ACS Appl. Mater. Interfaces 2016, 8, 6504–6511. [Google Scholar] [CrossRef]
- Chen, X.; Shao, J.; Li, X.; Tian, H. A Flexible Piezoelectric-Pyroelectric Hybrid Nanogenerator Based on P(VDF-TrFE) Nanowire Array. IEEE Trans. Nanotechnol. 2016, 15, 295–302. [Google Scholar] [CrossRef]
- Xue, H.; Yang, Q.; Wang, D.; Luo, W.; Wang, W.; Lin, M.; Liang, D.; Luo, Q. A wearable pyroelectric nanogenerator and self-powered breathing sensor. Nano Energy 2017, 38, 147–154. [Google Scholar] [CrossRef]
- Lang, S.B. Pyroelectricity: A 2300-year history. Ferroelectrics 1974, 7, 231–234. [Google Scholar] [CrossRef]
- Lubomirsky, I.; Stafsudd, O. Invited Review Article: Practical guide for pyroelectric measurements. Rev. Sci. Instrum. 2012, 83, 051101. [Google Scholar] [CrossRef]
- Lingam, D.; Parikh, A.R.; Huang, J.; Jain, A.; Minary-Jolandan, M. Nano/microscale pyroelectric energy harvesting: challenges and opportunities. Int. J. Smart Nano Mater. 2013, 4, 229–245. [Google Scholar] [CrossRef]
- Bowen, C.R.; Taylor, J.; Leboulbar, E.; Zabek, D.; Chauhan, A.; Vaish, R. Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 2014, 7, 3836–3856. [Google Scholar] [CrossRef] [Green Version]
- Whatmore, R.W. Pyroelectric devices and materials. Rep. Prog. Phys. 1986, 49, 1335–1386. [Google Scholar] [CrossRef]
- Lang, S.B.; Das-Gupta, D.K. Pyroelectricity. In Handbook of Advanced Electronic and Photonic Materials and Devices; Elsevier: Amsterdam, The Netherlands, 2001; pp. 1–55. ISBN 9780125137454. [Google Scholar]
- Cuadras, A.; Gasulla, M.; Ferrari, V. Thermal energy harvesting through pyroelectricity. Sens. Actuators A Phys. 2010, 158, 132–139. [Google Scholar] [CrossRef]
- Ferrari, V.; Ghisla, A.; Marioli, D.; Taroni, A. Array of pPZTpyroelectric thick-film sensors for contactless measurement of XY position. IEEE Sens. J. 2003, 3, 212–217. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Y.; Wang, Z.L.; Yang, Y. Standard and figure-of-merit for quantifying the performance of pyroelectric nanogenerators. Nano Energy 2019, 55, 534–540. [Google Scholar] [CrossRef]
- Li, X.; Lu, S.G.; Chen, X.Z.; Gu, H.; Qian, X.S.; Zhang, Q.M. Pyroelectric and electrocaloric materials. J. Mater. Chem. C 2013, 1, 23–37. [Google Scholar] [CrossRef]
- Cooper, J. A fast-response pyroelectric thermal detector. J. Sci. Instrum. 1962, 39, 467–472. [Google Scholar] [CrossRef]
- Sebald, G.; Lefeuvre, E.; Guyomar, D. Pyroelectric energy conversion: Optimization principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 538–551. [Google Scholar] [CrossRef]
- Sebald, G.; Seveyrat, L.; Guyomar, D.; Lebrun, L.; Guiffard, B.; Pruvost, S. Electrocaloric and pyroelectric properties of 0.75Pb(Mg1/3Nb2/3)O3–0.25PbTiO3 single crystals. J. Appl. Phys. 2006, 100, 124112. [Google Scholar] [CrossRef]
- Olsen, R.B.; Evans, D. Pyroelectric energy conversion: Hysteresis loss and temperature sensitivity of a ferroelectric material. J. Appl. Phys. 1983, 54, 5941–5944. [Google Scholar] [CrossRef]
- McKinley, I.M.; Kandilian, R.; Pilon, L. Waste heat energy harvesting using the Olsen cycle on 0.945Pb(Zn1/3Nb2/3)O3 – 0.055PbTiO3 single crystals. Smart Mater. Struct. 2012, 21, 035015. [Google Scholar] [CrossRef]
- Kouchachvili, L.; Ikura, M. Improving the efficiency of pyroelectric conversion. Int. J. Energy Res. 2008, 32, 328–335. [Google Scholar] [CrossRef]
- Khodayari, A.; Pruvost, S.; Sebald, G.; Guyomar, D.; Mohammadi, S. Nonlinear pyroelectric energy harvesting from relaxor single crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 693–699. [Google Scholar] [CrossRef]
- Kandilian, R.; Navid, A.; Pilon, L. The pyroelectric energy harvesting capabilities of PMN–PT near the morphotropic phase boundary. Smart Mater. Struct. 2011, 20, 055020. [Google Scholar] [CrossRef]
- Ikura, M. Conversion of Low-Grade Heat to Electricity Using Pyroelectric Copolymer. Ferroelectrics 2002, 267, 403–408. [Google Scholar] [CrossRef]
- Guyomar, D.; Pruvost, S.; Sebald, G. Energy harvesting based on FE-FE transition in ferroelectric single crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 279–285. [Google Scholar] [CrossRef]
- Hao, X.; Zhao, Y.; Zhang, Q. Phase Structure Tuned Electrocaloric Effect and Pyroelectric Energy Harvesting Performance of (Pb0.97La0.02)(Zr,Sn,Ti)O3 Antiferroelectric Thick Films. J. Phys. Chem. C 2015, 119, 18877–18885. [Google Scholar] [CrossRef]
- Luo, L.; Jiang, X.; Zhang, Y.; Li, K. Electrocaloric effect and pyroelectric energy harvesting of (0.94 − x)Na0.5Bi0.5TiO3-0.06BaTiO3-xSrTiO3 ceramics. J. Eur. Ceram. Soc. 2017, 37, 2803–2812. [Google Scholar] [CrossRef]
- Zhu, H.; Pruvost, S.; Guyomar, D.; Khodayari, A. Thermal energy harvesting from Pb(Zn1/3Nb2/3)0.955Ti0.045O3 single crystals phase transitions. J. Appl. Phys. 2009, 106, 124102. [Google Scholar] [CrossRef]
- Olsen, R.B.; Bruno, D.A.; Briscoe, J.M. Pyroelectric conversion cycles. J. Appl. Phys. 1985, 58, 4709–4716. [Google Scholar] [CrossRef]
- Olsen, R.B.; Briscoe, J.M.; Bruno, D.A.; Butler, W.F. A pyroelectric energy converter which employs regeneration. Ferroelectrics 1981, 38, 975–978. [Google Scholar] [CrossRef]
- Olsen, R.B. Ferroelectric Conversion of Heat to Electrical EnergyA Demonstration. J. Energy 1982, 6, 91–95. [Google Scholar] [CrossRef]
- Olsen, R.B.; Bruno, D.A.; Briscoe, J.M.; Dullea, J. Cascaded pyroelectric energy converter. Ferroelectrics 1984, 59, 205–219. [Google Scholar] [CrossRef]
- Olsen, R.B.; Brown, D.D. High efficieincy direct conversion of heat to electrical energy-related pyroelectric measurements. Ferroelectrics 1982, 40, 17–27. [Google Scholar] [CrossRef]
- Navid, A.; Vanderpool, D.; Bah, A.; Pilon, L. Towards optimization of a pyroelectric energy converter for harvesting waste heat. Int. J. Heat Mass Transf. 2010, 53, 4060–4070. [Google Scholar] [CrossRef]
- Navid, A.; Lynch, C.S.; Pilon, L. Purified and porous poly(vinylidene fluoride-trifluoroethylene) thin films for pyroelectric infrared sensing and energy harvesting. Smart Mater. Struct. 2010, 19, 055006. [Google Scholar] [CrossRef] [Green Version]
- Whatmore, R.W.; Osbond, P.C.; Shorrocks, N.M. Ferroelectric materials for thermal IR detectors. Ferroelectrics 1987, 76, 351–367. [Google Scholar] [CrossRef]
- Banan, M.; Lal, R.B.; Batra, A. Modified triglycine sulphate (TGS) single crystals for pyroelectric infrared detector applications. J. Mater. Sci. 1992, 27, 2291–2297. [Google Scholar] [CrossRef]
- Zhang, Y.; Bowen, C.R.; Ghosh, S.K.; Mandal, D.; Khanbareh, H.; Arafa, M.; Wan, C. Ferroelectret materials and devices for energy harvesting applications. Nano Energy 2019, 57, 118–140. [Google Scholar] [CrossRef]
- Zabek, D.; Taylor, J.; Le Boulbar, E.; Bowen, C.R. Micropatterning of flexible and free standing polyvinylidene difluoride (PVDF) films for enhanced pyroelectric energy transformation. Adv. Energy Mater. 2015, 5, 1–6. [Google Scholar] [CrossRef]
- Meixner, H. IR-Sensor-Arrays Based on PVDF. Ferroelectrics 1991, 115, 279–293. [Google Scholar] [CrossRef]
- Vats, G.; Kumar, A.; Ortega, N.; Bowen, C.R.; Katiyar, R.S. Giant pyroelectric energy harvesting and a negative electrocaloric effect in multilayered nanostructures. Energy Environ. Sci. 2016, 9, 1335–1345. [Google Scholar] [CrossRef] [Green Version]
- Vats, G.; Chauhan, A.; Vaish, R. Thermal Energy Harvesting Using Bulk Lead-Free Ferroelectric Ceramics. Int. J. Appl. Ceram. Technol. 2015, 12, E49–E54. [Google Scholar] [CrossRef]
- Vats, G.; Vaish, R.; Bowen, C.R. An analysis of lead-free (Bi0.5Na0.5)0.915(Bi0.5K0.5)0.05Ba0.02Sr0.015TiO3ceramic for efficient refrigeration and thermal energy harvesting. J. Appl. Phys. 2014, 115, 1–6. [Google Scholar] [CrossRef]
- Patel, S.; Chauhan, A.; Vaish, R. Enhanced energy harvesting in commercial ferroelectric materials. Mater. Res. Express 2014, 1, 025504. [Google Scholar] [CrossRef]
- Chauhan, A.; Patel, S.; Vats, G.; Vaish, R. Enhanced Thermal Energy Harvesting Using Li, K-Doped Bi0.5Na0.5TiO3 Lead-Free Ferroelectric Ceramics. Energy Technol. 2014, 2, 205–209. [Google Scholar] [CrossRef]
- Park, M.H.; Kim, H.J.; Kim, Y.J.; Moon, T.; Do Kim, K.; Hwang, C.S. Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1−xO2 films. Nano Energy 2015, 12, 131–140. [Google Scholar] [CrossRef]
- Hoffmann, M.; Schroeder, U.; Künneth, C.; Kersch, A.; Starschich, S.; Böttger, U.; Mikolajick, T. Ferroelectric phase transitions in nanoscale HfO2 films enable giant pyroelectric energy conversion and highly efficient supercapacitors. Nano Energy 2015, 18, 154–164. [Google Scholar] [CrossRef]
- Hao, X.; Zhao, Y.; An, S. Giant thermal-electrical energy harvesting effect of Pb0.97La0.02(Zr0.75Sn0.18Ti0.07)O3 antiferroelectric thick film. J. Am. Ceram. Soc. 2014, 98, 361–365. [Google Scholar] [CrossRef]
- Wang, X.; Hao, X.; Zhang, Q.; An, S.; Chou, X. Energy-storage performance and pyroelectric energy harvesting effect of PNZST antiferroelectric thin films. J. Mater. Sci. Mater. Electron. 2017, 28, 1438–1448. [Google Scholar] [CrossRef]
- Zhuo, F.; Li, Q.; Gao, J.; Yan, Q.; Zhang, Y.; Xi, X.; Chu, X. Phase transformations, anisotropic pyroelectric energy harvesting and electrocaloric properties of (Pb,La)(Zr,Sn,Ti)O3 single crystals. Phys. Chem. Chem. Phys. 2017, 19, 13534–13546. [Google Scholar] [CrossRef]
- Jo, H.R.; Lynch, C.S. Phase transformation based pyroelectric waste heat energy harvesting with improved practicality. Smart Mater. Struct. 2016, 25, 035009. [Google Scholar] [CrossRef]
- Zhuo, F.; Li, Q.; Li, Y.; Gao, J.; Yan, Q.; Zhang, Y.; Xi, X.; Chu, X.; Cao, W. Field induced phase transitions and energy harvesting performance of (Pb,La)(Zr,Sn,Ti)O3 single crystal. J. Appl. Phys. 2017, 121, 064104. [Google Scholar] [CrossRef]
- Vats, G.; Kushwaha, H.S.; Vaish, R.; Madhar, N.A.; Shahabuddin, M.; Parakkandy, J.M.; Batoo, K.M. Giant energy harvesting potential in (100)-oriented 0.68PbMg1/3Nb2/3O3–0.32PbTiO3 with Pb(Zr0.3Ti0.7)O3/PbOx buffer layer and (001)-oriented 0.67PbMg1/3Nb2/3O3–0.33PbTiO3 thin films. J. Adv. Dielectr. 2014, 04, 1450029. [Google Scholar] [CrossRef]
- Zheng, X.-C.; Zheng, G.-P.; Lin, Z.; Jiang, Z.-Y. Thermo-electrical energy conversions in Bi0.5Na0.5TiO3–BaTiO3 thin films prepared by sol–gel method. Thin Solid Films 2012, 522, 125–128. [Google Scholar] [CrossRef]
- Zuo, R.; Ye, C.; Fang, X.; Li, J. Tantalum doped 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 2008, 28, 871–877. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, X. Effect of B-site substitution of complex ions on dielectric and piezoelectric properties in (Bi1/2Na1/2)TiO3 piezoelectric ceramics. Mater. Chem. Phys. 2008, 108, 413–416. [Google Scholar] [CrossRef]
- Yao, Y.-Q.; Tseng, T.-Y.; Chou, C.-C.; Chen, H.H.D. Phase transition and piezoelectric property of (Bi0.5Na0.5)0.94Ba0.06ZryTi1−yO3 (y=0–0.04) ceramics. J. Appl. Phys. 2007, 102, 094102. [Google Scholar] [CrossRef]
- Fan, G.; Lu, W.; Wang, X.; Liang, F. Morphotropic phase boundary and piezoelectric properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–KNbO3 lead-free piezoelectric ceramics. Appl. Phys. Lett. 2007, 91, 202908. [Google Scholar] [CrossRef]
- Kounga, A.B.; Zhang, S.-T.; Jo, W.; Granzow, T.; Rödel, J. Morphotropic phase boundary in (1−x)Bi0.5Na0.5TiO3–xK0.5Na0.5NbO3 lead-free piezoceramics. Appl. Phys. Lett. 2008, 92, 222902. [Google Scholar] [CrossRef]
- Hiruma, Y.; Imai, Y.; Watanabe, Y.; Nagata, H.; Takenaka, T. Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3–SrTiO3 ferroelectric ceramics. Appl. Phys. Lett. 2008, 92, 262904. [Google Scholar] [CrossRef]
- Li, Y.; Chen, W.; Xu, Q.; Zhou, J.; Wang, Y.; Sun, H. Piezoelectric and dielectric properties of CeO2-doped Bi0.5Na0.44K0.06TiO3 lead-free ceramics. Ceram. Int. 2007, 33, 95–99. [Google Scholar] [CrossRef]
- Wang, X.X.; Tang, X.G.; Chan, H.L.W. Electromechanical and ferroelectric properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–BaTiO3 lead-free piezoelectric ceramics. Appl. Phys. Lett. 2004, 85, 91–93. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, X.; Li, W.; Yuan, C. Structure and piezoelectric properties of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3–BiFeO3 lead-free piezoelectric ceramics. Mater. Chem. Phys. 2009, 114, 832–836. [Google Scholar] [CrossRef]
- Sebald, G.; Pruvost, S.; Guyomar, D. Energy harvesting based on Ericsson pyroelectric cycles in a relaxor ferroelectric ceramic. Smart Mater. Struct. 2008, 17, 015012. [Google Scholar] [CrossRef]
- Nguyen, H.; Navid, A.; Pilon, L. Pyroelectric energy converter using co-polymer P(VDF-TrFE) and Olsen cycle for waste heat energy harvesting. Appl. Therm. Eng. 2010, 30, 2127–2137. [Google Scholar] [CrossRef]
- Olsen, R.B.; Bruno, D.A.; Briscoe, J.M.; Jacobs, E.W. Pyroelectric conversion cycle of vinylidene fluoride-trifluoroethylene copolymer. J. Appl. Phys. 1985, 57, 5036–5042. [Google Scholar] [CrossRef] [Green Version]
- Lee, F.Y.; Goljahi, S.; McKinley, I.M.; Lynch, C.S.; Pilon, L. Pyroelectric waste heat energy harvesting using relaxor ferroelectric 8/65/35 PLZT and the Olsen cycle. Smart Mater. Struct. 2012, 21, 025021. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, W.; Pradel, K.C.; Zhu, G.; Zhou, Y.; Zhang, Y.; Hu, Y.; Lin, L.; Wang, Z.L. Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 2012, 12, 2833–2838. [Google Scholar] [CrossRef]
- Navid, A.; Pilon, L. Pyroelectric energy harvesting using Olsen cycles in purified and porous poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] thin films. Smart Mater. Struct. 2011, 20, 025012. [Google Scholar] [CrossRef]
- Lee, F.Y.; Navid, A.; Pilon, L. Pyroelectric waste heat energy harvesting using heat conduction. Appl. Therm. Eng. 2012, 37, 30–37. [Google Scholar] [CrossRef]
- Ploss, B.; Bauer, S. Characterization of materials for integrated pyroelectric sensors. Sens. Actuators A Phys. 1991, 26, 407–411. [Google Scholar] [CrossRef]
- Bowen, C.R.; Kim, H.A.; Weaver, P.M.; Dunn, S. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 2014, 7, 25–44. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, S.H.; Ezhilarasi, D.; Uma, G.; Umapathy, M. Pyroelectric-Based Solar and Wind Energy Harvesting System. IEEE Trans. Sustain. Energy 2014, 5, 73–81. [Google Scholar] [CrossRef]
- Hsiao, C.-C.; Siao, A.-S.; Ciou, J.-C.; Hsiao, C.-C.; Siao, A.-S.; Ciou, J.-C. Improvement of Pyroelectric Cells for Thermal Energy Harvesting. Sensors 2012, 12, 534–548. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Mane, P.P.; Green, C.W.; Mossi, K.M.; Leang, K.K. Energy Harvesting by Pyroelectric Effect Using PZT. In Proceedings of the Smart Materials, Adaptive Structures and Intelligent Systems, Ellicott City, MD, USA, 28–30 October 2008; ASME: New York, NY, USA, 2008; Volume 2, pp. 273–277. [Google Scholar]
- Yang, Y.; Zhou, Y.; Wu, J.M.; Wang, Z.L. Single Micro/Nanowire Pyroelectric Nanogenerators as Self-Powered Temperature Sensors. ACS Nano 2012, 6, 8456–8461. [Google Scholar] [CrossRef]
- Dalola, S.; Ferrari, V.; Marioli, D. Pyroelectric effect in PZT thick films for thermal energy harvesting in low-power sensors. Procedia Eng. 2010, 5, 685–688. [Google Scholar] [CrossRef]
- Erturun, U.; Green, C.; Richeson, M.L.; Mossi, K. Experimental analysis of radiation heat–based energy harvesting through pyroelectricity. J. Intell. Mater. Syst. Struct. 2014, 25, 1838–1849. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, S.; Zhang, Y.; Wang, Z.L. Pyroelectric Nanogenerators for Driving Wireless Sensors. Nano Lett. 2012, 12, 6408–6413. [Google Scholar] [CrossRef] [Green Version]
- Kotipalli, V.; Gong, Z.; Pathak, P.; Zhang, T.; He, Y.; Yadav, S.; Que, L. Light and thermal energy cell based on carbon nanotube films. Appl. Phys. Lett. 2010, 97, 124102. [Google Scholar] [CrossRef]
- Mangalam, R.V.K.; Agar, J.C.; Damodaran, A.R.; Karthik, J.; Martin, L.W. Improved Pyroelectric Figures of Merit in Compositionally Graded PbZr1– xTixO3 Thin Films. ACS Appl. Mater. Interfaces 2013, 5, 13235–13241. [Google Scholar] [CrossRef]
- Lee, F.Y.; Jo, H.R.; Lynch, C.S.; Pilon, L. Pyroelectric energy conversion using PLZT ceramics and the ferroelectric–ergodic relaxor phase transition. Smart Mater. Struct. 2013, 22, 025038. [Google Scholar] [CrossRef]
- Chin, T.K.; Lee, F.Y.; Mckinley, I.M.; Goljahi, S.; Lynch, C.S.; Pilon, L. Direct thermal to electrical energy conversion using 9.5/65/35 PLZT ceramics in the ergodic relaxor phase. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 2373–2385. [Google Scholar] [CrossRef]
- Zhao, Y.; Hao, X.; Zhang, Q. A giant electrocaloric effect of a Pb0.97La0.02(Zr0.75Sn0.18Ti0.07)O3 antiferroelectric thick film at room temperature. J. Mater. Chem. C 2015, 3, 1694–1699. [Google Scholar] [CrossRef]
- Ortega, N.; Kumar, A.; Katiyar, R.S.; Rinaldi, C. Investigation of temperature-dependent polarization, dielectric, and magnetization behavior of multiferroic layered nanostructure. Thin Solid Films 2010, 519, 641–649. [Google Scholar] [CrossRef]
- Ortega, N.; Kumar, A.; Katiyar, R.S.; Scott, J.F. Maxwell-Wagner space charge effects on the Pb(Zr,Ti)O3–CoFe2O4 multilayers. Appl. Phys. Lett. 2007, 91, 102902. [Google Scholar] [CrossRef]
- Potnuru, A.; Tadesse, Y. Characterization of Pyroelectric Materials for Energy Harvesting from Human Body. Integr. Ferroelectr. 2014, 150, 23–50. [Google Scholar] [CrossRef]
- Sultana, A.; Alam, M.M.; Middya, T.R.; Mandal, D. A pyroelectric generator as a self-powered temperature sensor for sustainable thermal energy harvesting from waste heat and human body heat. Appl. Energy 2018, 221, 299–307. [Google Scholar] [CrossRef]
- Zhao, T.; Jiang, W.; Niu, D.; Liu, H.; Chen, B.; Shi, Y.; Yin, L.; Lu, B. Flexible pyroelectric device for scavenging thermal energy from chemical process and as self-powered temperature monitor. Appl. Energy 2017, 195, 754–760. [Google Scholar] [CrossRef]
- Ryu, H.; Yoon, H.-J.; Kim, S.-W. Hybrid Energy Harvesters: Toward Sustainable Energy Harvesting. Adv. Mater. 2019, 1802898. [Google Scholar] [CrossRef]
- Zi, Y.; Lin, L.; Wang, J.; Wang, S.; Chen, J.; Fan, X.; Yang, P.-K.K.; Yi, F.; Wang, Z.L. Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv. Mater. 2015, 27, 2340–2347. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Z.L.; Yang, Y. A One-Structure-Based Hybridized Nanogenerator for Scavenging Mechanical and Thermal Energies by Triboelectric-Piezoelectric-Pyroelectric Effects. Adv. Mater. 2016, 28, 2881–2887. [Google Scholar] [CrossRef]
- Pullano, S.A.; Fiorillo, A.S.; Islam, S.K. A pyroelectric sensor for system-on-a-chip. In Proceedings of the 2014 40th Annual Northeast Bioengineering Conference (NEBEC), Boston, MA, USA, 25–27 April 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–2. [Google Scholar]
- Pullano, S.A.; Islam, S.K.; Fiorillo, A.S. Pyroelectric Sensor for Temperature Monitoring of Biological Fluids in Microchannel Devices. IEEE Sens. J. 2014, 14, 2725–2730. [Google Scholar] [CrossRef]
- Mane, P.; Xie, J.; Leang, K.K.; Mossi, K. Cyclic energy harvesting from pyroelectric materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 10–17. [Google Scholar] [CrossRef]
- McKinley, I.M.; Pilon, L. Phase transitions and thermal expansion in pyroelectric energy conversion. Appl. Phys. Lett. 2013, 102, 023906. [Google Scholar] [CrossRef]
- Sun, R.; Wang, J.; Wang, F.; Feng, T.; Li, Y.; Chi, Z.; Zhao, X.; Luo, H. Pyroelectric properties of Mn-doped 94.6Na0.5Bi0.5TiO3-5.4BaTiO3 lead-free single crystals. J. Appl. Phys. 2014, 115, 074101. [Google Scholar] [CrossRef]
- Huang, K.; Wang, J.B.; Zhong, X.L.; Liu, B.L.; Chen, T.; Zhou, Y.C. Significant polarization variation near room temperature of Ba0.65Sr0.35TiO3 thin films for pyroelectric energy harvesting. Sens. Actuators B Chem. 2012, 169, 208–212. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, A.; Kumar, R.; Vaish, R.; Chauhan, V.S. Finite element analysis of vibration energy harvesting using lead-free piezoelectric materials: A comparative study. J. Asian Ceram. Soc. 2014, 2, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Kumar, R.; Vaish, R.; Chauhan, V.S. Performance of K0.5Na0.5NbO3 (KNN)-based Lead-free Piezoelectric Materials in Active Vibration Control. Int. J. Appl. Ceram. Technol. 2015, 12, 64–72. [Google Scholar] [CrossRef]
- Patel, S.; Chauhan, A.; Vaish, R. Large pyroelectric figure of merits for Sr-modified Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics. Solid State Sci. 2016, 52, 10–18. [Google Scholar] [CrossRef]
- Ohji, T.; Fukushima, M. Macro-porous ceramics: processing and properties. Int. Mater. Rev. 2012, 57, 115–131. [Google Scholar] [CrossRef]
- Zhang, G.; Jiang, S.; Zeng, Y.; Zhang, Y.; Zhang, Q.; Yu, Y. High Pyroelectric Properties of Porous Ba0.67 Sr0.33TiO3 for Uncooled Infrared Detectors. J. Am. Ceram. Soc. 2009, 92, 3132–3134. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, S.; Kajiyoshi, K. Enhanced Pyroelectric and Piezoelectric Figure of Merit of Porous Bi0.5(Na0.82K0.18)0.5TiO3 Lead-Free Ferroelectric Thick Films. J. Am. Ceram. Soc. 2010, 93, 1957–1964. [Google Scholar]
- Zhang, Y.; Bao, Y.; Zhang, D.; Bowen, C.R. Porous PZT Ceramics with Aligned Pore Channels for Energy Harvesting Applications. J. Am. Ceram. Soc. 2015, 98, 2980–2983. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Liu, P.; Zhang, X.; Zhang, L.; Li, Q.; Yao, J.; Zeng, Y.; Wang, Q.; Zhang, G. Enhanced pyroelectric properties of porous Ba0.67Sr0.33TiO3 ceramics fabricated with carbon nanotubes. J. Alloys Compd. 2015, 636, 93–96. [Google Scholar] [CrossRef]
- Suyal, G.; Setter, N. Enhanced performance of pyroelectric microsensors through the introduction of nanoporosity. J. Eur. Ceram. Soc. 2004, 24, 247–251. [Google Scholar] [CrossRef]
- Zhang, Q.; Corkovic, S.; Shaw, C.P.; Huang, Z.; Whatmore, R.W. Effect of porosity on the ferroelectric properties of sol–gel prepared lead zirconate titanate thin films. Thin Solid Films 2005, 488, 258–264. [Google Scholar] [CrossRef]
Materials | Form | Tlow (K) | Thigh (K) | Elow (kVcm−1) | Ehigh (kVcm−1) | Maximum Harvestable Energy Density (kJm−3 cycle−1) | Ref. |
---|---|---|---|---|---|---|---|
PbZr0.53Ti0.47O3/CoFe2O4 | TF | 100 | 300 | 0 | 400 | 47,372 | [82] |
K[(Nb0.90Ta0.10)0.99Mn0.01]O3 | BC | 413 | 433 | 1 | 50 | 629 | [83] |
0.74Na0.5Bi0.5TiO3-0.06BaTiO3-0.20SrTiO3 | BC | 303 | 423 | 0 | 40 | 425 | [68] |
(Bi0.5Na0.5)0.915(Bi0.5K0.5)0.05 Ba0.02Sr0.015TiO3 | BC | 293 | 433 | 1 | 40 | 1523 | [84] |
Pb(ZrxTi1-x)O3 | BC | - | - | 1 | 25 | 348 | [85] |
Bi0.5Na0.44K0.06TiO3 | BC | 298 | 393 | 1 | 52 | 1986 | [86] |
Hf0.2Zr0.8O2 | TF | 298 | 423 | 0 | 3260 | 11,500 | [87] |
5.6 mol% Si:HfO2 | TF | 110 a | 430 a | 0 a | 3330 a | 20,270 | [88] |
Pb0.97La0.02(Zr0.75Sn0.18 Ti0.07)O3 | TF’ | 298 | 558 | 300 | 900 | 7800 | [89] |
(Pb0.97La0.02)(Zr0.75Sn0.20 Ti0.05)O3 | TF’ | 293 | 473 | 300 | 900 | 6800 | [67] |
Pb0.99Nb0.02(Zr0.55Sn0.40 Ti0.05)0.98O3 | TF | 298 | 498 | 218 | 1091 | 7350 | [90] |
[111]-Oriented (Pb0.967La0.022)(Zr0.64Sn0.23Ti0.13)O3 | SC | 298 | 453 | 5 | 30 | 620 | [91] |
(Pb0.97La0.02)(Zr0.55Sn0.32 Ti0.13)O3 | BC | 298 | 453 | 10 | 80 | 270 | [92] |
Pb0.97La0.02Zr0.57Sn0.24Ti0.19O3 | SC | 298 | 448 | 0 | 30 | 400 | [93] |
0.68PbMg1/3N2/3O3–0.32PbTiO3 | TF | 303 | 323 | 0 | 600 | 8000 | [94] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thakre, A.; Kumar, A.; Song, H.-C.; Jeong, D.-Y.; Ryu, J. Pyroelectric Energy Conversion and Its Applications—Flexible Energy Harvesters and Sensors. Sensors 2019, 19, 2170. https://doi.org/10.3390/s19092170
Thakre A, Kumar A, Song H-C, Jeong D-Y, Ryu J. Pyroelectric Energy Conversion and Its Applications—Flexible Energy Harvesters and Sensors. Sensors. 2019; 19(9):2170. https://doi.org/10.3390/s19092170
Chicago/Turabian StyleThakre, Atul, Ajeet Kumar, Hyun-Cheol Song, Dae-Yong Jeong, and Jungho Ryu. 2019. "Pyroelectric Energy Conversion and Its Applications—Flexible Energy Harvesters and Sensors" Sensors 19, no. 9: 2170. https://doi.org/10.3390/s19092170
APA StyleThakre, A., Kumar, A., Song, H. -C., Jeong, D. -Y., & Ryu, J. (2019). Pyroelectric Energy Conversion and Its Applications—Flexible Energy Harvesters and Sensors. Sensors, 19(9), 2170. https://doi.org/10.3390/s19092170