Multi-Phase Flow Metering in Offshore Oil and Gas Transportation Pipelines: Trends and Perspectives
Abstract
:1. Introduction
1.1. Model Prediction, History Matching and Future of Reservoir
1.2. Flow Regimes
- Phase properties, fractions and velocities.
- Operating pressure and temperature.
- Diameter, shape, inclination and roughness of the transportation pipe.
- Presence of e.g., valves, T-junctions and bends.
- Pipe direction: vertical, horizontal or incline/decline.
- Type of the flow: whether the flow is in steady-state, pseudo steady state or unsteady (transient).
1.3. Separation and Chemical Injection
2. Conventional Flow Measurement Technology
3. Multi-Phase Flow Metering
3.1. Tomography
3.1.1. Electrical Capacitance Tomography (ECT)
3.1.2. Electrical Resistance Tomography (ERT)
3.1.3. Electromagnetic Tomography (EMT)
3.1.4. Microwave Tomography (MWT)
3.1.5. Electrical Impedance Tomography (EIT)
3.1.6. Optical Tomography
3.2. Gamma Densitometry
3.3. Differential Pressure Meters
3.3.1. Orifice Plate
3.3.2. Venturi Meter
3.4. Wet Gas
3.5. Summary of Current Technologies
4. Comparison of Industrial MPFMs
5. Discussion of Advantages and Disadvantages Regarding MPFMs
5.1. Cost
5.2. Maintenance
5.3. Footprint
5.4. Radioactive Source
5.5. Calibration
6. Conclusion and Predictions for MPFMs
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
a | Cross-section of pipe divided with equal area |
A | Cross-section area of the pipe |
Area of orifice plate | |
ANN | Artificial neural network |
C | Capacitance |
Discharge coefficient | |
Discharge coefficient for compressible flows | |
Discharge coefficient for incompressible flows | |
CAPEX | Capital expenditures |
Diameter of pipe | |
Diameter of pipe at Vena Contracta | |
D | Internal diameter of the pipe |
DP | Differential pressure |
ECT | Electrical capacitance tomography |
EIT | Electrical impedance tomography |
EMT | Electromagnetic tomography |
ERT | Electrical resistance tomography |
EVT | Electromagnetic velocity tomography |
Volume fraction of phase x | |
FM | Flow meter |
Gas densimetric Froude number | |
Liquid densimetric Froude number | |
g | Gravitational force |
GVF | Gas volume fraction |
LBP | Linear back projection |
Mass flow rate of the gas | |
Mass flow rate of the liquid | |
M | Mass flow rate |
MIT | Magnetic induction tomography |
MR | Magnetic resonance |
MPFM | Multi-phase Flow Meter |
MWT | Microwave tomography |
N | Number of elements |
NIR | Near infra red |
OPEX | Operating expenses |
P | Pressure |
PET | Positron emission tomography |
PEPT | Positron emission particle tracking |
PT | Pressure and temperature |
PW | Produced water |
Q | Volumetric flow rate |
Volumetric flow rate of phase x | |
Superficial gas velocity | |
Superficial liquid velocity | |
Instantaneous velocity of gas | |
Flow velocity in the i-th element | |
Instantaneous velocity of oil | |
Instantaneous velocity of water | |
V | Potential difference |
VFM | Virtual Flow Meter |
VMS | Virtual Metering System |
WLR | Water liquid ratio |
Lockhart-Martinelli wet gas parameter | |
Y | Expansion coefficient |
z | Change in elevation |
Gas void fraction | |
Water fraction | |
Ratio between diameter of pipe and diameter of orifice | |
Oil fraction | |
Electrode surface | |
Permeability distribution | |
Permittivity of gas | |
Permittivity of oil | |
Permittivity of water | |
Electrical potential distribution | |
Density of gas | |
Density of liquid | |
Density of oil | |
Density of water | |
Conductivity distribution |
References
- Thorn, R.; Johansen, G.A.; Hammer, E.A. Recent developments in three-phase flow measurement. Meas. Sci. Technol. 1997, 8, 691. [Google Scholar] [CrossRef]
- Hasan, A. Multiphase Flow Rate Measurement Using a Novel Conductance Venturi Meter: Experimental and Theoretical Study in Different Flow Regimes. Ph.D. Thesis, University of Huddersfield, Huddersfield, UK, 2010. [Google Scholar]
- Smedstad, E.; MacKenzie, R.; Kerr, J.; Shepler, R.A.; Singh, R. System and Method for Controlling Subsea Wells. U.S. Patent 7,931,090, 26 April 2011. [Google Scholar]
- Smith, D.R. Method and Apparatus to Monitor, Control and Log Subsea Oil and Gas Wells. U.S. Patent 6,913,083, 5 July 2005. [Google Scholar]
- Pedersen, S.; Durdevic, P.; Yang, Z. Challenges in slug modeling and control for offshore oil and gas productions: A review study. Int. J. Multiph. Flow 2017, 88, 270–284. [Google Scholar] [CrossRef]
- Thorn, R.; Johansen, G.A.; Hjertaker, B. Three-phase flow measurement in the petroleum industry. Meas. Sci. Technol. 2012, 24, 012003. [Google Scholar] [CrossRef]
- Yan, Z.; Xie, J.Z.; Yang, W.H.; Hou, L.H. Method for improving history matching precision of reservoir numerical simulation. Pet. Explor. Dev. 2008, 35, 225–229. [Google Scholar]
- Aanonsen, S.I.; Eydinov, D. A multiscale method for distributed parameter estimation with application to reservoir history matching. Comput. Geosci. 2006, 10, 97–117. [Google Scholar] [CrossRef]
- Wang, Y.; Kovscek, A.R. A Streamline Approach for History-Matching Production Data; Technical Report; Stanford University (US): Stanford, CA, USA, 2001. [Google Scholar]
- Chen, W.H.; Gavalas, G.R.; Seinfeld, J.H.; Wasserman, M.L. A new algorithm for automatic history matching. Soc. Pet. Eng. J. 1974, 14, 593–608. [Google Scholar] [CrossRef]
- Oliver, D.S.; Chen, Y. Recent progress on reservoir history matching: A review. Comput. Geosci. 2011, 15, 185–221. [Google Scholar] [CrossRef]
- Oliver, D.S.; Reynolds, A.C.; Liu, N. Inverse Theory for Petroleum Reservoir Characterization and History Matching; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Storkaas, E. Stabilizing Control and Controllability: Control Solutions to Avoid Slug Flow in Pipeline-Riser Systems; Fakultet for naturvitenskap og teknologi: Gjøvik, Norway, 2005. [Google Scholar]
- Pedersen, S.; Jahanshahi, E.; Yang, Z.; Skogestad, S. Comparison of Model-Based Control Solutions for Severe Riser-Induced Slugs. Energies 2017, 10, 2014. [Google Scholar] [CrossRef]
- Durdevic, P.; Pedersen, S.; Yang, Z. Challenges in modelling and control of offshore de-oiling hydrocyclone systems. J. Phys. Conf. Ser. 2017, 783, 012048. [Google Scholar] [CrossRef]
- Mcminn, R.E. Separation Method and Apparatus. U.S. Patent 3,212,234, 19 October 1965. [Google Scholar]
- Zhou, X.; Jepson, W. Corrosion in Three-Phase Oil/Water/Gas Slug Flow in Horizontal Pipes; Technical Report; NACE International: Houston, TX, USA, 1994. [Google Scholar]
- Pedersen, S.; Løhndorf, P.D.; Yang, Z. Influence of riser-induced slugs on the downstream separation processes. J. Pet. Sci. Eng. 2017, 154, 337–343. [Google Scholar] [CrossRef]
- Løhndorf, P.D. Real-Time Monitoring and Robust Control of Offshore De-oiling Processes. Ph.D. Thesis, Aalborg Universitetsforlag, Aalborg, Denmark, 2017. [Google Scholar]
- Pedersen, S. Plant-Wide Anti-Slug Control for Offshore Oil and Gas Processes. Ph.D. Thesis, Aalborg University, Aalborg, Denmark, 2016. [Google Scholar]
- Agency, T.D.E.P. Permission for Discharge of Oil in Produced Water Hess Danmark Aps 18. December 2018. J.no MST-171-00010. Available online: https://mst.dk/media/171227/20190121-hess-generel-udledningstilladelse-2019-2020-u-bilag.pdf (accessed on 25 February 2019).
- Agency, T.D.E.P. Permission for Discharge of Oil in Produced Water INEOS Oil & Gas 20. December 2018. J.no MST-171-00009. Available online: https://mst.dk/media/171228/20190121-2019-2020-ineos-udledningstilladelse-20122018-u-bilag.pdf (accessed on 25 February 2019).
- Agency, T.D.E.P. Permission for Discharge of Oil in Produced Water Total E&P Danmark A/S 21. December 2018. J.no MST-171-00011. Available online: https://mst.dk/media/171231/20190121-generel-udledningstilladelse-for-total-2019-2020u-bilag.pdf (accessed on 25 February 2019).
- Commission, O. Overview Assessment of the Implementation of OSPAR Recommendation 2001/1 for the Management of Produced Water from Offshore Installations; Publication Number: 502/2010. Available online: https://mst.dk/media/171231/20190121-generel-udledningstilladelse-for-total-2019-2020u-bilag.pdf (accessed on 25 February 2019).
- OSPAR Commission. Introduction from the Executive Secretary. Available online: https://www.ospar.org/about/introduction (accessed on 25 February 2019).
- ESIA Maersk oil DBU. Non-Technical Summary—ESIS Tyra. Available online: https://ens.dk/sites/ens.dk/files/OlieGas/ikke-teknisk_resume_-_tyra_-_engelsk.pdf (accessed on 27 February 2019).
- Tyra Gas Field Redevelopment. Available online: https://www.offshore-technology.com/projects/tyra-gas-field-redevelopment/ (accessed on 27 February 2019).
- Grant, A.A.; Almdahl, P.; Gramme, P.E.; Kjolberg, S.A.; Olsen, B.; Sondtvedt, T. Downhole Gas/Water Separation and Re-Injection. U.S. Patent 6,691,781, 17 February 2004. [Google Scholar]
- Sheng, J. Modern Chemical Enhanced Oil Recovery: Theory and Practice; Gulf Professional Publishing: Oxford, UK, 2010. [Google Scholar]
- Corneliussen, S.; Couput, J.P.; Dahl, E.; Dykesteen, E.; Frøysa, K.E.; Malde, E.; Moestue, H.; Moksnes, P.O.; Scheers, L.; Tunheim, H. Handbook of Multiphase Flow Metering; Revision 2; Norwegian Society for Oil and Gas Measurement (NFOGM): Oslo, Norway, 2005. [Google Scholar]
- Jansen, J.D.; Bosgra, O.H.; Van den Hof, P.M. Model-based control of multiphase flow in subsurface oil reservoirs. J. Process Control 2008, 18, 846–855. [Google Scholar] [CrossRef] [Green Version]
- Zuo, L.; Yu, W.; Wu, K. A fractional decline curve analysis model for shale gas reservoirs. Int. J. Coal Geol. 2016, 163, 140–148. [Google Scholar] [CrossRef]
- Ahmed, T. Reservoir Engineering Handbook; Gulf Professional Publishing: Oxford, UK, 2018. [Google Scholar]
- Höök, M.; Hirsch, R.; Aleklett, K. Giant oil field decline rates and their influence on world oil production. Energy Policy 2009, 37, 2262–2272. [Google Scholar] [CrossRef] [Green Version]
- Rahuma, K.M.; Mohamed, H.; Hissein, N.; Giuma, S. Prediction of reservoir performance applying decline curve analysis. Int. J. Chem. Eng. Appl. 2013, 4, 74. [Google Scholar] [CrossRef]
- Spedding, P.; Spence, D. Flow regimes in two-phase gas-liquid flow. Int. J. Multiph. Flow 1993, 19, 245–280. [Google Scholar] [CrossRef]
- Tjugum, S.; Hjertaker, B.; Johansen, G. Multiphase flow regime identification by multibeam gamma-ray densitometry. Meas. Sci. Technol. 2002, 13, 1319. [Google Scholar] [CrossRef]
- Taitel, Y.; Dukler, A. A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE J. 1976, 22, 47–55. [Google Scholar] [CrossRef]
- Barnea, D. A unified model for predicting flow-pattern transitions for the whole range of pipe inclinations. Int. J. Multiph. Flow 1987, 13, 1–12. [Google Scholar] [CrossRef]
- Barnea, D.; Brauner, N. Holdup of the liquid slug in two phase intermittent flow. Int. J. Multiph. Flow 1985, 11, 43–49. [Google Scholar] [CrossRef]
- Açikgöz, M.; Franca, F.; Lahey, R., Jr. An experimental study of three-phase flow regimes. Int. J. Multiph. Flow 1992, 18, 327–336. [Google Scholar] [CrossRef]
- Falcone, G.; Hewitt, G.; Alimonti, C. Multiphase Flow Metering: Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2009; Volume 54. [Google Scholar]
- Mandhane, J.; Gregory, G.; Aziz, K. A flow pattern map for gas—Liquid flow in horizontal pipes. Int. J. Multiph. Flow 1974, 1, 537–553. [Google Scholar] [CrossRef]
- Weisman, J.; Kang, S. Flow pattern transitions in vertical and upwardly inclined lines. Int. J. Multiph. Flow 1981, 7, 271–291. [Google Scholar] [CrossRef]
- McQuillan, K.; Whalley, P. Flow patterns in vertical two-phase flow. Int. J. Multiph. Flow 1985, 11, 161–175. [Google Scholar] [CrossRef]
- Kaichiro, M.; Ishii, M. Flow regime transition criteria for upward two-phase flow in vertical tubes. Int. J. Heat Mass Transf. 1984, 27, 723–737. [Google Scholar] [CrossRef]
- Sivertsen, H.; Skogestad, S. Cascade control experiments of riser slug flow using topside measurements. IFAC Proc. Vol. 2005, 38, 129–134. [Google Scholar] [CrossRef]
- Isaksen, O.; Dico, A.; Hammer, E.A. A capacitance-based tomography system for interface measurement in separation vessels. Meas. Sci. Technol. 1994, 5, 1262. [Google Scholar] [CrossRef]
- Becker, J. Crude Oil Waxes, Emulsions, and Asphaltenes; Pennwell Books: Tulsa, OK, USA, 1997. [Google Scholar]
- Eow, J.S.; Ghadiri, M. Electrostatic enhancement of coalescence of water droplets in oil: A review of the technology. Chem. Eng. J. 2002, 85, 357–368. [Google Scholar] [CrossRef]
- Williams, T.J.; Bailey, A.G. Changes in the size distribution of a water-in-oil emulsion due to electric field induced coalescence. IEEE Trans. Ind. Appl. 1986, IA-22, 536–541. [Google Scholar] [CrossRef]
- Kim, B.Y.; Moon, J.H.; Sung, T.H.; Yang, S.M.; Kim, J.D. Demulsification of water-in-crude oil emulsions by a continuous electrostatic dehydrator. Sep. Sci. Technol. 2002, 37, 1307–1320. [Google Scholar] [CrossRef]
- Li, W.; Pots, B.; Brown, B.; Kee, K.E.; Nesic, S. A direct measurement of wall shear stress in multiphase flow—Is it an important parameter in CO2 corrosion of carbon steel pipelines? Corros. Sci. 2016, 110, 35–45. [Google Scholar] [CrossRef]
- Nešić, S. Key issues related to modelling of internal corrosion of oil and gas pipelines—A review. Corros. Sci. 2007, 49, 4308–4338. [Google Scholar] [CrossRef]
- Thorn, R.; Johansen, G.A.; Hammer, E.A. Three-Phase Flow Measurement in the Offshore Oil Industry: Is There a Place for Process Tomography? In Proceedings of the First World Congress on Industrial Process Tomography, Buxton, Greater Manchester, UK, 14–17 April 1999; pp. 14–17. [Google Scholar]
- Ismail, I.; Gamio, J.; Bukhari, S.A.; Yang, W. Tomography for multi-phase flow measurement in the oil industry. Flow Meas. Instrum. 2005, 16, 145–155. [Google Scholar] [CrossRef]
- Atkinson, I.; Theuveny, B.; Berard, M.; Conort, G.; Groves, J.; Lowe, T.; McDiarmid, A.; Mehdizadeh, P.; Perciot, P.; Pinguet, B.; et al. A new horizon in multiphase flow measurement. Oilfield Rev. 2004, 16, 52–63. [Google Scholar]
- Skea, A.; Hall, A. Effects of gas leaks in oil flow on single-phase flowmeters. Flow Meas. Instrum. 1999, 10, 145–150. [Google Scholar] [CrossRef]
- Liu, W.Z. Multiphase Flow Meter. U.S. Patent 14/716,323, 19 May 2016. [Google Scholar]
- Dyakowski, T. Process tomography applied to multi-phase flow measurement. Meas. Sci. Technol. 1996, 7, 343. [Google Scholar] [CrossRef]
- Li, Y.; Yang, W.; Xie, C.; Huang, S.; Wu, Z.; Tsamakis, D.; Lenn, C. Gas/oil/water flow measurement by electrical capacitance tomography. Meas. Sci. Technol. 2013, 24, 074001. [Google Scholar] [CrossRef]
- Hammer, E.A.; Johansen, G.A. Process tomography in the oil industry—State of the art and future possibilities. Meas. Control 1997, 30, 212–216. [Google Scholar] [CrossRef]
- Yu, Z.; Peyton, A.; Beck, M.; Conway, W.; Xu, L. Imaging system based on electromagnetic tomography (EMT). Electron. Lett. 1993, 29, 625–626. [Google Scholar] [CrossRef]
- Yang, W.; Stott, A.; Beck, M.; Xie, C. Development of capacitance tomographic imaging systems for oil pipeline measurements. Rev. Sci. Instrum. 1995, 66, 4326–4332. [Google Scholar] [CrossRef]
- Huang, Z.; Xie, D.; Zhang, H.; Li, H. Gas–oil two-phase flow measurement using an electrical capacitance tomography system and a Venturi meter. Flow Meas. Instrum. 2005, 16, 177–182. [Google Scholar] [CrossRef]
- Isaksen, Ø. A review of reconstruction techniques for capacitance tomography. Meas. Sci. Technol. 1996, 7, 325. [Google Scholar] [CrossRef]
- York, T.A. Status of electrical tomography in industrial applications. J. Electron. Imaging 2001, 10, 608–620. [Google Scholar] [CrossRef]
- Yang, W. Design of electrical capacitance tomography sensors. Meas. Sci. Technol. 2010, 21, 042001. [Google Scholar] [CrossRef]
- Beck, M.; Williams, R. Process tomography: A European innovation and its applications. Meas. Sci. Technol. 1996, 7, 215. [Google Scholar] [CrossRef]
- Chaouki, J.; Larachi, F.; Duduković, M.P. Noninvasive tomographic and velocimetric monitoring of multiphase flows. Ind. Eng. Chem. Res. 1997, 36, 4476–4503. [Google Scholar] [CrossRef]
- Taherian, M.R.; Habashy, T.M. Microwave Device and Method for Measuring Multiphase Flows. U.S. Patent 5,485,743, 23 January 1996. [Google Scholar]
- Xie, C.; Huang, S.; Hoyle, B.; Thorn, R.; Lenn, C.; Snowden, D.; Beck, M. Electrical capacitance tomography for flow imaging: system model for development of image reconstruction algorithms and design of primary sensors. IEE Proc. G-Circuits Devices Syst. 1992, 139, 89–98. [Google Scholar] [CrossRef]
- Yang, W.; Spink, D.; York, T.; McCann, H. An image-reconstruction algorithm based on Landweber’s iteration method for electrical-capacitance tomography. Meas. Sci. Technol. 1999, 10, 1065. [Google Scholar] [CrossRef]
- Gamio, J.; Castro, J.; Rivera, L.; Alamilla, J.; Garcia-Nocetti, F.; Aguilar, L. Visualisation of gas–oil two-phase flows in pressurised pipes using electrical capacitance tomography. Flow Meas. Instrum. 2005, 16, 129–134. [Google Scholar] [CrossRef]
- Jeanmeure, L.F.; Dyakowski, T.; Zimmerman, W.B.; Clark, W. Direct flow-pattern identification using electrical capacitance tomography. Exp. Therm. Fluid Sci. 2002, 26, 763–773. [Google Scholar] [CrossRef]
- Wang, F.; Marashdeh, Q.; Fan, L.S.; Warsito, W. Electrical capacitance volume tomography: Design and applications. Sensors 2010, 10, 1890–1917. [Google Scholar] [CrossRef]
- Wu, Z. Developing a microwave tomographic system for multiphase flow imaging: advances and challenges. Trans. Inst. Meas. Control 2015, 37, 760–768. [Google Scholar] [CrossRef]
- Drury, R.; Hunt, A.; Brusey, J. Identification of horizontal slug flow structures for application in selective cross-correlation metering. Flow Meas. Instrum. 2018, 66, 141–149. [Google Scholar] [CrossRef]
- Yang, W.; Peng, L. Image reconstruction algorithms for electrical capacitance tomography. Meas. Sci. Technol. 2002, 14, R1. [Google Scholar] [CrossRef]
- Beck, M.S. Process Tomography: Principles, Techniques and Applications; Butterworth-Heinemann: Oxford, UK, 2012. [Google Scholar]
- Warsito, W.; Fan, L.S. Measurement of real-time flow structures in gas–liquid and gas–liquid–solid flow systems using electrical capacitance tomography (ECT). Chem. Eng. Sci. 2001, 56, 6455–6462. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, B.; Li, H. Application of electrical capacitance tomography to the void fraction measurement of two-phase flow. IEEE Trans. Instrum. Meas. 2003, 52, 7–12. [Google Scholar] [CrossRef]
- Yang, W.; Li, Y.; Wu, Z.; Tsamakis, D.; Learmonth, D.; Xie, C.G.; Huang, S.; Lenn, C.; Cutler, A. Multiphase flow measurement by electrical capacitance tomography. In Proceedings of the 2011 IEEE International Conference on Imaging Systems and Techniques, Penang, Malaysia, 17–18 May 2011; pp. 108–111. [Google Scholar]
- Dickin, F.; Wang, M. Electrical resistance tomography for process applications. Meas. Sci. Technol. 1996, 7, 247. [Google Scholar] [CrossRef]
- Dong, F.; Jiang, Z.; Qiao, X.; Xu, L. Application of electrical resistance tomography to two-phase pipe flow parameters measurement. Flow Meas. Instrum. 2003, 14, 183–192. [Google Scholar] [CrossRef]
- Feng, D.; Cong, X.; Zhang, Z.; Shangjie, R. Design of parallel electrical resistance tomography system for measuring multiphase flow. Chin. J. Chem. Eng. 2012, 20, 368–379. [Google Scholar]
- Durdevic, P.; Hansen, L.; Mai, C.; Pedersen, S.; Yang, Z. Cost-effective ERT technique for oil-in-water measurement for offshore hydrocyclone installations. Ifac-papersonline 2015, 48, 147–153. [Google Scholar] [CrossRef]
- Pedersen, S.; Mai, C.; Hansen, L.; Durdevic, P.; Yang, Z. Online Slug Detection in Multi-phase Transportation Pipelines Using Electrical Tomography. Ifac-papersonline 2015, 48, 159–164. [Google Scholar] [CrossRef]
- Ma, Y.; Zheng, Z.; Xu, L.; Liu, X.; Wu, Y. Application of electrical resistance tomography system to monitor gas/liquid two-phase flow in a horizontal pipe. Flow Meas. Instrum. 2001, 12, 259–265. [Google Scholar] [CrossRef]
- Wang, M. Impedance mapping of particulate multiphase flows. Flow Meas. Instrum. 2005, 16, 183–189. [Google Scholar] [CrossRef]
- Xie, C.; Reinecke, N.; Beck, M.; Mewes, D.; Williams, R. Electrical tomography techniques for process engineering applications. Chem. Eng. J. Biochem. Eng. J. 1995, 56, 127–133. [Google Scholar] [CrossRef]
- Sun, J.; Yang, W. A dual-modality electrical tomography sensor for measurement of gas–oil–water stratified flows. Measurement 2015, 66, 150–160. [Google Scholar] [CrossRef]
- Hoyle, B.; Jia, X.; Podd, F.; Schlaberg, H.; Tan, H.; Wang, M.; West, R.; Williams, R.; York, T. Design and application of a multi-modal process tomography system. Meas. Sci. Technol. 2001, 12, 1157. [Google Scholar] [CrossRef]
- Deng, X.; Chen, D.; Yang, W. Study on electrodynamic sensor of multi-modality system for multiphase flow measurement. Rev. Sci. Instrum. 2011, 82, 124701. [Google Scholar] [CrossRef]
- Qiu, C.; Hoyle, B.; Podd, F. Engineering and application of a dual-modality process tomography system. Flow Meas. Instrum. 2007, 18, 247–254. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, H.; Xu, Y.; Zhang, L.; Yan, Y. An integrated ECT/ERT dual modality sensor. In Proceedings of the Instrumentation and Measurement Technology Conference, I2MTC’09, Singapore, 5–7 May 2009; pp. 1434–1438. [Google Scholar]
- Li, Y.; Yang, W. Measurement of multi-phase distribution using an integrated dual-modality sensor. In Proceedings of the IEEE International Workshop on Imaging Systems and Techniques, IST’09, Shenzhen, China, 11–12 May 2009; pp. 335–339. [Google Scholar]
- Wylie, S.; Shaw, A.; Al-Shamma’a, A. RF sensor for multiphase flow measurement through an oil pipeline. Meas. Sci. Technol. 2006, 17, 2141. [Google Scholar] [CrossRef]
- Ma, X.; Peyton, A.; Higson, S.; Lyons, A.; Dickinson, S. Hardware and software design for an electromagnetic induction tomography (EMT) system for high contrast metal process applications. Meas. Sci. Technol. 2005, 17, 111. [Google Scholar] [CrossRef]
- Ma, L.; McCann, D.; Hunt, A. Combining Magnetic Induction Tomography and Electromagnetic Velocity Tomography for Water Continuous Multiphase Flows. IEEE Sens. J. 2017, 17, 8271–8281. [Google Scholar] [CrossRef]
- Semenov, S.Y.; Svenson, R.H.; Boulyshev, A.E.; Souvorov, A.E.; Borisov, V.Y.; Sizov, Y.; Starostin, A.N.; Dezern, K.R.; Tatsis, G.P.; Baranov, V.Y. Microwave tomography: Two-dimensional system for biological imaging. IEEE Trans. Biomed. Eng. 1996, 43, 869–877. [Google Scholar] [CrossRef]
- Broquetas, A.; Romeu, J.; Rius, J.M.; Elias-Fuste, A.R.; Cardama, A.; Jofre, L. Cylindrical geometry: A further step in active microwave tomography. IEEE Trans. Microw. Theory Tech. 1991, 39, 836–844. [Google Scholar] [CrossRef]
- Wu, Z.; McCann, H.; Davis, L.; Hu, J.; Fontes, A.; Xie, C. Microwave-tomographic system for oil-and gas-multiphase-flow imaging. Meas. Sci. Technol. 2009, 20, 104026. [Google Scholar] [CrossRef]
- Mallach, M.; Gebhardt, P.; Musch, T. 2D microwave tomography system for imaging of multiphase flows in metal pipes. Flow Meas. Instrum. 2017, 53, 80–88. [Google Scholar] [CrossRef]
- Heikkinen, L.; Kourunen, J.; Savolainen, T.; Vauhkonen, P.; Kaipio, J.; Vauhkonen, M. Real time three- dimensional electrical impedance tomography applied in multiphase flow imaging. Meas. Sci. Technol. 2006, 17, 2083. [Google Scholar] [CrossRef]
- George, D.; Torczynski, J.; Shollenberger, K.; O’Hern, T.; Ceccio, S. Validation of electrical-impedance tomography for measurements of material distribution in two-phase flows. Int. J. Multiph. Flow 2000, 26, 549–581. [Google Scholar] [CrossRef] [Green Version]
- Costa, E.L.; Lima, R.G.; Amato, M.B. Electrical impedance tomography. In Yearbook of Intensive Care and Emergency Medicine; Springer: Berlin/Heidelberg, Germany, 2009; pp. 394–404. [Google Scholar]
- Saulnier, G.J.; Blue, R.S.; Newell, J.C.; Isaacson, D.; Edic, P.M. Electrical impedance tomography. IEEE Signal Process. Mag. 2001, 18, 31–43. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, H.; Yang, W.; Yan, Y. A calculable sensor for electrical impedance tomography. Sens. Actuators A Phys. 2007, 140, 156–161. [Google Scholar] [CrossRef]
- Arridge, S.R.; Schotland, J.C. Optical tomography: forward and inverse problems. Inverse Probl. 2009, 25, 123010. [Google Scholar] [CrossRef] [Green Version]
- IAEA. Industrial Process Gamma Tomography. In Industrial Applications and Chemistry Section; International Atomic Energy Agency: Vienna, Austria, 2008. [Google Scholar]
- Schleicher, E.; Da Silva, M.; Thiele, S.; Li, A.; Wollrab, E.; Hampel, U. Design of an optical tomograph for the investigation of single-and two-phase pipe flows. Meas. Sci. Technol. 2008, 19, 094006. [Google Scholar] [CrossRef]
- Bruvik, E.M.; Hjertaker, B.T.; Hallanger, A. Gamma-ray tomography applied to hydro-carbon multi-phase sampling and slip measurements. Flow Meas. Instrum. 2010, 21, 240–248. [Google Scholar] [CrossRef]
- Sætre, C.; Johansen, G.; Tjugum, S. Salinity and flow regime independent multiphase flow measurements. Flow Meas. Instrum. 2010, 21, 454–461. [Google Scholar] [CrossRef]
- Kalaga, D.V.; Kulkarni, A.V.; Acharya, R.; Kumar, U.; Singh, G.; Joshi, J.B. Some industrial applications of gamma-ray tomography. J. Taiwan Inst. Chem. Eng. 2009, 40, 602–612. [Google Scholar] [CrossRef]
- Hampel, U.; Hoppe, D.; Diele, K.H.; Fietz, J.; Höller, H.; Kernchen, R.; Prasser, H.M.; Zippe, C. Application of gamma tomography to the measurement of fluid distributions in a hydrodynamic coupling. Flow Meas. Instrum. 2005, 16, 85–90. [Google Scholar] [CrossRef]
- Blaney, S.; Yeung, H. Investigation of the exploitation of a fast-sampling single gamma densitometer and pattern recognition to resolve the superficial phase velocities and liquid phase water cut of vertically upward multiphase flows. Flow Meas. Instrum. 2008, 19, 57–66. [Google Scholar] [CrossRef]
- Hoffmann, R.; Johnson, G.W. Measuring phase distribution in high pressure three-phase flow using gamma densitometry. Flow Meas. Instrum. 2011, 22, 351–359. [Google Scholar] [CrossRef]
- Hanus, R.; Zych, M.; Kusy, M.; Jaszczur, M.; Petryka, L. Identification of liquid–gas flow regime in a pipeline using gamma-ray absorption technique and computational intelligence methods. Flow Meas. Instrum. 2018, 60, 17–23. [Google Scholar] [CrossRef]
- Arvoh, B.K.; Hoffmann, R.; Halstensen, M. Estimation of volume fractions and flow regime identification in multiphase flow based on gamma measurements and multivariate calibration. Flow Meas. Instrum. 2012, 23, 56–65. [Google Scholar] [CrossRef]
- Kumara, W.; Halvorsen, B.; Melaaen, M. Single-beam gamma densitometry measurements of oil–water flow in horizontal and slightly inclined pipes. Int. J. Multiph. Flow 2010, 36, 467–480. [Google Scholar] [CrossRef]
- Roshani, G.; Nazemi, E.; Feghhi, S.; Setayeshi, S. Flow regime identification and void fraction prediction in two-phase flows based on gamma ray attenuation. Measurement 2015, 62, 25–32. [Google Scholar] [CrossRef]
- Roshani, G.; Feghhi, S.; Mahmoudi-Aznaveh, A.; Nazemi, E.; Adineh-Vand, A. Precise volume fraction prediction in oil–water–gas multiphase flows by means of gamma-ray attenuation and artificial neural networks using one detector. Measurement 2014, 51, 34–41. [Google Scholar] [CrossRef]
- Oosterbroek, R.; Lammerink, T.S.; Berenschot, J.W.; Krijnen, G.J.; Elwenspoek, M.C.; van den Berg, A. A micromachined pressure/flow-sensor. Sens. Actuators A Phys. 1999, 77, 167–177. [Google Scholar] [CrossRef]
- Xu, L.; Xu, J.; Dong, F.; Zhang, T. On fluctuation of the dynamic differential pressure signal of Venturi meter for wet gas metering. Flow Meas. Instrum. 2003, 14, 211–217. [Google Scholar] [CrossRef]
- Campos, S.R.V.; Baliño, J.L.; Slobodcicov, I.; Paz, E. Orifice plate meter field performance: Formulation and validation in multiphase flow conditions. Exp. Therm. Fluid Sci. 2014, 58, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z. Two-phase flow measurements with sharp-edged orifices. Int. J. Multiph. Flow 1982, 8, 683–693. [Google Scholar] [CrossRef]
- Ferreira, V. Differential pressure spectral analysis for two-phase flow through an orifice plate. Int. J. Press. Vessels Pip. 1997, 73, 19–23. [Google Scholar] [CrossRef]
- Oliveira, J.L.G.; Passos, J.C.; Verschaeren, R.; van der Geld, C. Mass flow rate measurements in gas–liquid flows by means of a venturi or orifice plate coupled to a void fraction sensor. Exp. Therm. Fluid Sci. 2009, 33, 253–260. [Google Scholar] [CrossRef]
- Peter, U.C.; Chinedu, U. Model prediction for constant area, variable pressure drop in orifice plate characteristics in flow system. Chem. Int. 2016, 2, 80–88. [Google Scholar]
- Discharge Coefficient for Nozzle and Orifices. Available online: https://www.engineeringtoolbox.com/orifice-nozzle-venturi-d_590.html (accessed on 15 November 2018).
- Calculation of Flow through Nozzles and Orifices. Available online: https://neutrium.net/fluid_flow/calculation-of-flow-through-nozzles-and-orifices/ (accessed on 13 December 2018).
- Segeral, G. Multiphase Mass Flow Meter with Variable Venturi Nozzle. U.S. Patent 6,993,979, 7 February 2006. [Google Scholar]
- Hunt, A. Measuring Flow in a Pipe. U.S. Patent 4,856,344, 15 August 1989. [Google Scholar]
- De Leeuw, R. Liquid correction of Venturi meter readings in wet gas flow. In Proceedings of the North Sea Flow Measurement Workshop 1997, Kristiansand, Norway, 27–30 October 1997; p. 335. [Google Scholar]
- Hasan, A.H.; Lucas, G. Experimental and theoretical study of the gas–water two phase flow through a conductance multiphase Venturi meter in vertical annular (wet gas) flow. Nucl. Eng. Des. 2011, 241, 1998–2005. [Google Scholar] [CrossRef] [Green Version]
- Meng, Z.; Huang, Z.; Wang, B.; Ji, H.; Li, H.; Yan, Y. Air–water two-phase flow measurement using a Venturi meter and an electrical resistance tomography sensor. Flow Meas. Instrum. 2010, 21, 268–276. [Google Scholar] [CrossRef]
- Steven, R.N. Wet gas metering with a horizontally mounted Venturi meter. Flow Meas. Instrum. 2002, 12, 361–372. [Google Scholar] [CrossRef]
- Richard, S.; Shugart, C.; Kutty, R. Orifice Meter Multiphase Wet Gas Flow Performance—The Pressure Loss Ratio Solution to the ‘Ill-Posed’ Problem. In Proceedings of the North Sea Flow Measurement Workshop, Aberdeen, UK, 22–24 October 2018. [Google Scholar]
- Steven, R.; Hall, A. Orifice plate meter wet gas flow performance. Flow Meas. Instrum. 2009, 20, 141–151. [Google Scholar] [CrossRef]
- Emerson Process Management. Roxar MPFM 2600 MVG. Data Sheet FM-T402-M. 2016. Available online: https://www.emerson.com/documents/automation/product-data-sheet-mpfm-2600-mvg-datasheet-roxar-en-us-170812.pdf (accessed on 1 December 2018).
- Emerson Process Management. Roxar Subsea Wetgas Meter. Product Data Sheet. 2018. Available online: https://www.emerson.com/documents/automation/data-sheet-subsea-wetgas-meter-roxar-en-82058.pdf (accessed on 1 December 2018).
- Emerson Process Management. Roxar subsea Multiphase Meter. Data Sheet C-190109. 2016. Available online: https://www.emerson.com/documents/automation/data-sheet-subsea-multiphase-meter-roxar-en-81788.pdf (accessed on 1 December 2018).
- Halliburton, Testing & Subsea. Multiphase Flow Metering (MPFM) System. Data Sheet H010920. 2014. Available online: https://www.halliburton.com/content/dam/ps/public/ts/contents/Data_Sheets/web/H/H010920_MPFM.pdf (accessed on 1 December 2018).
- Schlumberger. Vx Spectra. Data Sheet 17-TP-302930. 2017. Available online: https://www.slb.com/~/media/Files/testing/brochures/multiphase/vx_spectra_surface_multiphase_flowmeter_br.pdf (accessed on 1 December 2018).
- Schlumberger. Vx Omni Subsea Multiphase Flowmeter. Data Sheet 18-OSS-403511. 2018. Available online: https://www.onesubsea.slb.com/-/media/cam/resources/2018/04/27/20/47/vx-omni-product-sheet.ashx (accessed on 1 December 2018).
- Weatherford. VSRD Multiphase Flowmeter. Data Sheet. 2018. Available online: https://weatherford.com/en/documents/brochure/products-and-services/production-optimization/vsrd-multiphase-flowmeter/ (accessed on 1 December 2018).
- Weatherford. Red Eye Multiphase Metering System. Data Sheet. 2017. Available online: https://www.weatherford.com/en/documents/brochure/products-and-services/production-optimization/red-eye-multiphase-metering-system/ (accessed on 1 December 2018).
- Weatherford. VSR Wet-Gas Flowmeter. Data Sheet. 2018. Available online: https://www.weatherford.com/en/documents/brochure/products-and-services/production-optimization/vsr-wet-gas-flowmeter/ (accessed on 1 December 2018).
- Pietro Fiorentini. Pietro Fiorentini Multiphase Flowmeter Flowatch 3I. Data Sheet. 2011. Available online: https://www.fiorentini.com/media/files/546_specification_sheetflowatch_v3_3i_1_1.pdf (accessed on 1 December 2018).
- Pietro Fiorentini. Flowatch Multiphase Wet Gas Meter 3I—Non Gamma System. Data Sheet. 2012. Available online: https://www.fiorentini.com/media/files/143_749_specification_sheet_multiphase_wet_gas_meter_1.pdf (accessed on 1 December 2018).
- Pietro Fiorentini. Pietro Fiorentini Multiphase Flowmeter Flowatch HS. Data Sheet. 2011. Available online: https://www.fiorentini.com/media/files/547_specification_sheetflowatch_v3_hs_1_1_2.pdf (accessed on 1 December 2018).
- Pietro Fiorentini. Xtreme HS Wetgas Meter. Data Sheet. 2015. Available online: https://www.fiorentini.com/media/files/1196_specification_sheet_wetgas_meter_xtremehs.pdf (accessed on 1 December 2018).
- Pietro Fiorentini. Multiphase Flow Measurement. Data Sheet CT-s 585-E. 2014. Available online: https://www.fiorentini.com/media/files/995_flowatch_2014_lr.pdf (accessed on 1 December 2018).
- Pietro Fiorentini. NIR WLR-Meter; Data Sheet. 2015. Available online: https://www.fiorentini.com/media/files/143_1187_nir-wlr-meter-datasheet-2015.pdf (accessed on 1 December 2018).
- ABB & TEA Sistemi. Multiphase Flow Meter O&M Manual. Data Sheet TEA-16-230. 2016. Available online: http://www.abb.com/cawp/seitp202/f5a716028bb9bbe585257d4a00526342.aspx (accessed on 1 December 2018).
- KROHNE Oil & Gas. M-PHASE 5000—Magnetic Resonance Multiphase Flowmeter for the Simultaneous Measurement of Oil, Gas and Water; 4004769102 BR M-PHASE 5000-R02-en; KROHNE Oil & Gas: Breda, The Netherlands, 2017; Available online: https://vn.krohne.com/en/products/flow-measurement/flowmeters/magnetic-resonance-multiphase-flowmeters/m-phase-5000/ (accessed on 1 December 2018).
- Bai, Y.; Bai, Q. Subsea Engineering Handbook; Gulf Professional Publishing: Oxford, UK, 2018. [Google Scholar]
- Kobbacy, K.A.H.; Murthy, D.P. Complex System Maintenance Handbook; Springer Science & Business Media: London, UK, 2008. [Google Scholar]
- Coriolis Flow Meter Calibration—Intertek. Available online: file://et.aau.dk/Users/lsh/Downloads/ Coriolis%20Flow%20Meter%20Calibration%20Services%20Data%20Sheet%20Web%20Quality.pdf (accessed on 8 January 2019).
- Coriolis Calibration Reduces Mass Flow Measurement Uncertainty. Available online: https://www.flowcontrolnetwork.com/coriolis-calibration-reduces-mass-flow-measurement-uncertainty/ (accessed on 8 January 2019).
- International-Atomic-Energy-Agency. Disposal Options for Disused Radioactive Sources; Technical Report Series No. 436; International Atomic Energy Agency: Vienna, Austria, 2005. [Google Scholar]
- PerkinElmer. Guide to the Safe Handling of Radioactive Materials in Research. 007092A _ 01. 2007. Available online: https://www.perkinelmer.com/CMSResources/Images/44-73406gde_safehandlingradioactivematerials.pdf (accessed on 8 January 2019).
- SensorsONE: Not Reading Zero when Pressure Is Vented to Atmosphere. Available online: https://www.sensorsone.com/not-reading-zero-when-pressure-is/ (accessed on 10 January 2019).
- Frøystein, T.; Kvandal, H.; Aakre, H. Dual energy gamma tomography system for high pressure multiphase flow. Flow Meas. Instrum. 2005, 16, 99–112. [Google Scholar] [CrossRef]
- Zhao, Y.; Bi, Q.; Hu, R. Recognition and measurement in the flow pattern and void fraction of gas–liquid two-phase flow in vertical upward pipes using the gamma densitometer. Appl. Therm. Eng. 2013, 60, 398–410. [Google Scholar] [CrossRef]
- Oddie, G.; Shi, H.; Durlofsky, L.; Aziz, K.; Pfeffer, B.; Holmes, J. Experimental study of two and three phase flows in large diameter inclined pipes. Int. J. Multiph. Flow 2003, 29, 527–558. [Google Scholar] [CrossRef]
Non-Commercial Prototypes | ||||
---|---|---|---|---|
Source | Technology | Accuracy | Advantages | Disadvantages |
[82] | ECT | 5% Measurement error. | New improved image reconstruction algorithm. Non-radioactive. | Mostly based on static experimental data. |
[83] | AC-based ECT | 3% Absolute error. | Non-radioactive. | Only suitable for oil-continuous flows. |
[97] | Dual-modal sensor: ECT & ERT | Not informed. Measurements follow the expected trend. | ECT mode when continuous phase is oil (WLR < 40%), ERT mode when continuous phase is water (WLR > 40%). Non-radioactive. | Needs more investigation upon dynamic evaluation. |
[100] | MIT & EVT | Single-phase: 0.012% relative error. Multi-phase: 12% relative error. | Robust, low-cost and non-radioactive solution. | Only suitable for water-continuous flows. Needs further improvements w.r.t. accuracy. |
[104] | MWT | Not informed. Measurements and simulated values show the same trend. | Designed is intended for the process industry and oil-gas-water flow imaging. | Needs improvements of image quality, when frequency is increased. |
[105] | EIT | Not informed. Measurements show the expected trend. | Designed for industrial application. | Needs further development before application (e.g., new measurement system). |
[109] | EIT | Capacitance mode: 1.64%. Conductive mode: 2.68% | Fast and robust image restoration algorithm. Simple hardware design. | Only preliminary tests. |
[112] | Optical tomography. | Gas inclusion: 0.21% void fraction error. Evans Blue solution: 2.17% void fraction error. | Fast data acquisition. | Limitations of larger GVF than 15%. |
[121] | Gamma densitometry. | 0.53% measurement error. | Non-intrusive and reliable. | Not tested with gas injections. Contains radioactive source. |
[122,123] | Dual modality densitometry. | 1% Mean absolute error. | Non-intrusive and able to identify flow regimes. | Contains radioactive source. |
[126] | VFM (Orifice plate) | 3.52% measurement error. | No radioactive source. | Limitation: fluid composition must remain constant during the measuring period. |
[65] | VFM (venturi meter + ECT) | Not informed, but performs good flowrate measurements. | High quality images from the ECT sensor. | Over- and underestimated measurements based on employed model (5 different). |
[137] | VFM (venturi meter + ERT) | 5% relative error (bubble and slug flow). 10% relative error (annular and stratified flow). | Improved measurement performance. No radioactive source. | Flow regime dependent. |
Industrial Multi-phase Flow Meters | |||||||
---|---|---|---|---|---|---|---|
Manufacturer | Emerson (Roxar) [141,142,143] | Halliburton [144] | Schlumberger [145,146] | Weatherford [147,148,149] | Pietro Fiorentini [150,151,152,153,154,155] | ABB [156] | KROHNE Oil & Gas [157] |
Footprint | Small | Small | Small | Small | Small | Small | Small |
Radioactive source | Optional | None | ✓ | ✓ | Optional | None | None |
Range | 2600 M/MG: 0–100% WLR 0–85% GVF 2600 MV/MVG: 0–100% WLR 0–100% GVF | 0–100% WLR 0–100% GVF | 0–100% WLR 0–100% GVF | 0–100% WLR 0–100% GVF | Flowatch 3I/HS: 0–100% WLR 0–97% GVF Wetgas meter: 0–100% WLR 0–100% GVF | 0–100% WLR 0–100% GVF | 0–100% WLR 0–98% GVF |
Technology | EIT | VFM | Gamma densitometry | VFM (venturi, gamma, sonar array). | Venturi, gamma densitometry, EIT. | VFM (Orifice plate) | Magnetic resonance (MR) |
Accuracy | 2600 M/MG: Liquid rate: ±8–10% relative. Gas rate: ±8–10% relative. Water cut: ±3–5% absolute. 2600 MV/MVG: Liquid rate: ±3–5% relative. Gas rate: ±6–8% relative. Water cut: ±2–4% absolute. | ±5% | Liquid rate: ±5%. Gas rate: ±5%. Water cut: ±2%. | Flowatch HS: Liquid rate: ±3% relative. Gas rate: ±5% relative. Water cut: ±2% absolute. | Gas: (GVF > 99%): 2% of reading. Gas: (90% < GVF > 100%): 3% of reading. Gas: (80% < GVF > 90%): 5% of reading. Gas: (GVF > 80%): 10% of reading. Liquid: (90% < GVF > 100%): 5% of reading. | Liquid rate: 3–5% MV. Gas rate: 8–10% MV. Water cut: 3–5% MV. | |
Repeatability | <2% | ±1% | ±2% | ||||
Advantages | Non-radioactive solutions and add-on equipment available. | No radiation. Simple and cheap solution. Measurements in full range. | No flow calibration plus add-on equipment. Measurements in full range. | Add-on options available. Measurements in full range. | Non-radioactive solutions and add-on equipment available. | No radiation. Simple and cheap solution. Measurements in full range. | No radiation. |
Disadvantages | Not full GVF depending on model. | Radioactive source. | Radioactive source. | Not full GVF depending on model. | Much calibration before start-up. | Not full GVF. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hansen, L.S.; Pedersen, S.; Durdevic, P. Multi-Phase Flow Metering in Offshore Oil and Gas Transportation Pipelines: Trends and Perspectives. Sensors 2019, 19, 2184. https://doi.org/10.3390/s19092184
Hansen LS, Pedersen S, Durdevic P. Multi-Phase Flow Metering in Offshore Oil and Gas Transportation Pipelines: Trends and Perspectives. Sensors. 2019; 19(9):2184. https://doi.org/10.3390/s19092184
Chicago/Turabian StyleHansen, Lærke Skov, Simon Pedersen, and Petar Durdevic. 2019. "Multi-Phase Flow Metering in Offshore Oil and Gas Transportation Pipelines: Trends and Perspectives" Sensors 19, no. 9: 2184. https://doi.org/10.3390/s19092184
APA StyleHansen, L. S., Pedersen, S., & Durdevic, P. (2019). Multi-Phase Flow Metering in Offshore Oil and Gas Transportation Pipelines: Trends and Perspectives. Sensors, 19(9), 2184. https://doi.org/10.3390/s19092184