A New Positioning Method Based on Multiple Ultrasonic Sensors for Autonomous Mobile Robot
Abstract
:1. Introduction
2. New Ultrasonic Positioning Method
- Modeling. A generalized measurement model is established for general sensor configuration (no special restriction/limitation on the position of the three ultrasonic sensors). Considering the computational complexity and practical measurement, a simplified measurement model is also established for simplified/linear sensor configuration.
- Experiments. Actual positioning experiments are carried out to verify the feasibility and effectiveness of the established models.
2.1. Generalized Measurement Model
2.2. Simplified Measurement Model
3. Experimental Results
3.1. Experimental Setup
3.2. Experimental Results
3.2.1. Experiment for the Generalized Measurement Model
3.2.2. Experiment for the Simplified Measurement Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegwart, R.; Nourbakhsh, I.R. Introduction to Autonomous Mobile Robots; MIT Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Siciliano, B.; Khatib, O. Springer Handbook of Robotics; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Gualda, D.; Urea, J. Simultaneous calibration and navigation (SCAN) of multiple ultrasonic local positioning systems. Inf. Fusion 2019, 45, 53–65. [Google Scholar] [CrossRef]
- Borenstein, J.; Koren, Y. Obstacle avoidance with ultrasonic sensors. IEEE J. Robot. Autom. 1988, 4, 213–218. [Google Scholar] [CrossRef]
- Lee, H.; Kang, D. Design and Fabrication of the High Directional Ultrasonic Ranging Sensor to Enhance the Spatial Resolution. In Proceedings of the IEEE Solid-state Sensors, Actuators & Microsystems Conference, Transducers International, Lyon, France, 10–14 June 2007. [Google Scholar]
- Ijaz, F. Indoor Positioning: A Review of Indoor Ultrasonic Positioning systems. In Proceedings of the IEEE International Conference on Advanced Communication Technology, PyeongChang, Korea, 27–30 January 2013. [Google Scholar]
- Carotenuto, R. A range estimation system using coded ultrasound. Sens. Actuators A Phys. 2016, 238, 104–111. [Google Scholar] [CrossRef]
- Gueuning, F.; Varlan, M. Accurate distance measurement by an autonomous ultrasonic system combining time-of-flight and phase-shift methods. IEEE Trans. Instrum. Meas. 1997, 46, 1236–1240. [Google Scholar] [CrossRef]
- Marioli, D.; Sardini, E. Ultrasonic distance measurement for linear and angular position control. IEEE Trans. Instrum. Meas. 1988, 37, 578–581. [Google Scholar] [CrossRef]
- Kleinschmidt, P.; Magori, V. Ultrasonic Robotic-Sensors for Exact Short Range Distance Measurement and Object Identification. In Proceedings of the IEEE Ultrasonics Symposium, San Francisco, CA, USA, 16–18 October 1985. [Google Scholar]
- Canali, C.; Cicco, G.D. A Temperature Compensated Ultrasonic Sensor Operating in Air for Distance and Proximity Measurements. IEEE Trans. Ind. Electron. 1982, IE-29, 336–341. [Google Scholar]
- Shin, S.; Kim, M.H. Improving efficiency of ultrasonic distance sensors using pulse interval modulation. In Proceedings of the IEEE Sensors, Orlando, FL, USA, 30 October–3 November 2016. [Google Scholar]
- Sarabia, E.G.; Llata, J.R. Accurate Estimation of Airborne Ultrasonic Time-of-Flight for Overlapping Echoes. Sensors 2013, 13, 15465–15488. [Google Scholar] [CrossRef] [PubMed]
- Saad, M.M.; Bleakley, C.J. High-Accuracy Reference-Free Ultrasonic Location Estimation. IEEE Trans. Instrum. Meas. 2012, 61, 1561–1570. [Google Scholar] [CrossRef]
- Kuc, R. Forward model for sonar maps produced with the Polaroid ranging module. IEEE Trans. Robot. Autom. 2003, 19, 358–362. [Google Scholar] [CrossRef]
- Li, W.; Chen, Q. Double threshold ultrasonic distance measurement technique and its application. Rev. Sci. Instrum. 2014, 85, 044905. [Google Scholar] [CrossRef] [PubMed]
- Cha, I.S.; Park, H.A. The characteristics of compensation on temperature of ultrasonic motor with robot actuator by fuzzy controller. In Proceedings of the IEEE Conference on Emerging Technologies & Factory Automation, Kauai, HI, USA, 18–21 November 1996. [Google Scholar]
- Cheng, X.C.; Su, S.J. Research on Single Base-Station Distance Estimation Algorithm in Quasi-GPS Ultrasonic Location System. J. Phys. Conf. Ser. 2006, 48, 452–456. [Google Scholar] [CrossRef]
- Lu, Y.; Finger, A. Channel model-based sensing for indoor ultrasonic location systems. In Proceedings of the IEEE Positioning Navigation & Communication, Dresden, Germany, 7–8 April 2011. [Google Scholar]
- Duff, P.; Muller, H. Autocalibration algorithm for ultrasonic location systems. In Proceedings of the Seventh IEEE International Symposium on Wearable Computers, White Plains, NY, USA, 21–23 October 2003. [Google Scholar]
- Motegi, T.; Mizutani, K. Simultaneous Measurement of Air Temperature and Humidity Based on Sound Velocity and Attenuation Using Ultrasonic Probe. Jpn. J. Appl. Phys. 2013, 52, 07HC05. [Google Scholar] [CrossRef]
- Harley, J.B.; Moura, J.M. Scale transform signal processing for optimal ultrasonic temperature compensation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 2226. [Google Scholar] [CrossRef] [PubMed]
- Ohyama, S.; Takayama, J. Temperature distribution and wind vector measurement using ultrasonic CT based on the time of flight detection. Sens. Actuators A Phys. 2009, 151, 159–167. [Google Scholar] [CrossRef]
- Chande, P.K.; Sharma, P.C. A fully compensated digital ultrasonic sensor for distance measurement. IEEE Trans. Instrum. Meas. 1984, 33, 128–129. [Google Scholar] [CrossRef]
- Huang, Y.S.; Young, M.S. An Accurate Ultrasonic Distance Measurement System with Self Temperature Compensation. Instrum. Sci. Technol. 2009, 37, 124–133. [Google Scholar] [CrossRef]
- Gao, X.Y.; Li, J.H. Review of Wheeled Mobile Robots’ Navigation Problems and Application Prospects in Agriculture. IEEE Access 2018, 6, 49248–49268. [Google Scholar] [CrossRef]
- Wu, Y.H.; Ta, X.X. Survey of underwater robot positioning navigation. Appl. Ocean Res. 2019, 90, 101845. [Google Scholar] [CrossRef]
- Jinbu, I.; Sato, S. Accuracy improvement of positional measurement system using ultrasonic waves for indoor flying robot. In Proceedings of the IEEE Society of Instrument & Control Engineers of Japan, Tsukuba, Japan, 20–23 September 2016. [Google Scholar]
- Shin, S.; Kim, M.H. Ultrasonic Distance Measurement Method with Crosstalk Rejection at High Measurement Rate. IEEE Trans. Instrum. Meas. 2019, 68, 972–979. [Google Scholar] [CrossRef]
- Tsai, W.Y.; Chen, H.C. An ultrasonic air temperature measurement system with self-correction function for humidity. Meas. Sci. Technol. 2005, 16, 548–555. [Google Scholar] [CrossRef]
- Hueber, G.; Ostermann, T. New approach of ultrasonic distance measurement technique in robot applications. In Proceedings of the IEEE International Conference on Signal Processing, Beijing, China, 21–25 August 2000; IEEE: Piscataway, NJ, USA, 2002. [Google Scholar]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
---|---|---|---|---|---|---|---|---|---|---|
S1 | (mm) | 244.0 | 267.0 | 291.0 | 315.0 | 363.0 | 411.0 | 460.0 | 509.0 | 558.0 |
(mm) | 241.0 | 262.0 | 285.0 | 308.0 | 357.0 | 402.0 | 450.0 | 497.0 | 546.0 | |
(mm) | 245.3 | 266.7 | 290.1 | 313.6 | 363.4 | 409.2 | 458.1 | 506.0 | 555.8 | |
(mm) | 244.4 | 268.8 | 289.4 | 314.9 | 364.5 | 406.7 | 462.6 | 506.1 | 560.2 | |
1.23% | 1.87% | 2.06% | 2.22% | 1.65% | 2.19% | 2.17% | 2.36% | 2.15% | ||
0.55% | 0.10% | 0.30% | 0.46% | 0.12% | 0.43% | 0.41% | 0.60% | 0.39% | ||
0.15% | 0.68% | 0.54% | 0.02% | 0.40% | 1.05% | 0.56% | 0.57% | 0.39% | ||
S2 | (mm) | 175.0 | 200.0 | 225.0 | 250.0 | 300.0 | 350.0 | 400.0 | 450.0 | 500.0 |
(mm) | 173.0 | 197.0 | 220.0 | 246.0 | 295.0 | 343.0 | 393.0 | 441.0 | 490.0 | |
(mm) | 176.1 | 200.6 | 224.0 | 250.4 | 300.3 | 349.2 | 400.1 | 448.9 | 498.8 | |
(mm) | 175.4 | 202.1 | 223.4 | 251.5 | 301.2 | 347.0 | 404.0 | 449.1 | 502.7 | |
1.14% | 1.50% | 2.22% | 1.60% | 1.67% | 2.00% | 1.75% | 2.00% | 2.00% | ||
0.64% | 0.28% | 0.46% | 0.17% | 0.11% | 0.23% | 0.02% | 0.23% | 0.23% | ||
0.23% | 1.06% | 0.70% | 0.61% | 0.39% | 0.86% | 1.00% | 0.21% | 0.55% | ||
S3 | (mm) | 233.0 | 255.0 | 278.0 | 301.0 | 348.0 | 396.0 | 444.0 | 492.0 | 541.0 |
(mm) | 230.0 | 251.0 | 272.0 | 297.0 | 341.0 | 390.0 | 437.0 | 485.0 | 531.0 | |
(mm) | 234.1 | 255.5 | 276.9 | 302.4 | 347.1 | 397.0 | 444.9 | 493.7 | 540.6 | |
(mm) | 233.2 | 257.5 | 276.2 | 303.7 | 348.1 | 394.5 | 449.2 | 493.9 | 544.8 | |
1.29% | 1.57% | 2.16% | 1.33% | 2.01% | 1.52% | 1.58% | 1.42% | 1.85% | ||
0.49% | 0.21% | 0.39% | 0.45% | 0.25% | 0.26% | 0.20% | 0.35% | 0.08% | ||
0.09% | 0.99% | 0.64% | 0.89% | 0.03% | 0.37% | 1.18% | 0.38% | 0.70% |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
---|---|---|---|---|---|---|---|---|---|---|
S1 | (mm) | 199.0 | 221.0 | 244.0 | 267.0 | 315.0 | 363.0 | 411.0 | 460.0 | 509.0 |
(mm) | 196.0 | 217.0 | 242.0 | 263.0 | 309.0 | 356.0 | 401.0 | 451.0 | 500.0 | |
(mm) | 199.5 | 220.9 | 246.4 | 267.7 | 314.6 | 362.4 | 408.2 | 459.1 | 509.0 | |
(mm) | 199.1 | 220.7 | 245.1 | 267.1 | 317.5 | 362.5 | 414.3 | 457.9 | 503.3 | |
1.51% | 1.81% | 0.82% | 1.50% | 1.90% | 1.93% | 2.43% | 1.96% | 1.77% | ||
0.27% | 0.04% | 0.97% | 0.28% | 0.14% | 0.16% | 0.67% | 0.19% | 0.00% | ||
0.05% | 0.14% | 0.46% | 0.03% | 0.79% | 0.15% | 0.80% | 0.46% | 1.12% | ||
S2 | (mm) | 175.0 | 200.0 | 225.0 | 250.0 | 300.0 | 350.0 | 400.0 | 450.0 | 500.0 |
(mm) | 172.0 | 196.0 | 222.0 | 246.0 | 295.0 | 343.0 | 391.0 | 442.0 | 491.0 | |
(mm) | 175.1 | 199.5 | 226.0 | 250.4 | 300.3 | 349.2 | 398.0 | 450.0 | 499.9 | |
(mm) | 174.7 | 199.3 | 224.9 | 249.8 | 303.1 | 349.2 | 404.0 | 448.7 | 494.2 | |
1.71% | 2.00% | 1.33% | 1.60% | 1.67% | 2.00% | 2.25% | 1.78% | 1.80% | ||
0.06% | 0.23% | 0.45% | 0.17% | 0.11% | 0.23% | 0.49% | 0.01% | 0.03% | ||
0.16% | 0.33% | 0.06% | 0.07% | 1.03% | 0.22% | 0.99% | 0.28% | 1.15% | ||
S3 | (mm) | 207.0 | 228.0 | 250.0 | 273.0 | 320.0 | 367.0 | 415.0 | 463.0 | 512.0 |
(mm) | 203.0 | 224.0 | 246.0 | 269.0 | 314.0 | 359.0 | 406.0 | 456.0 | 503.0 | |
(mm) | 206.7 | 228.0 | 250.4 | 273.8 | 319.7 | 365.5 | 413.3 | 464.2 | 512.1 | |
(mm) | 206.2 | 227.8 | 249.2 | 273.2 | 322.6 | 365.5 | 419.5 | 463.0 | 506.3 | |
1.93% | 1.75% | 1.60% | 1.47% | 1.88% | 2.18% | 2.17% | 1.51% | 1.76% | ||
0.16% | 0.02% | 0.17% | 0.31% | 0.11% | 0.42% | 0.41% | 0.26% | 0.01% | ||
0.38% | 0.08% | 0.33% | 0.07% | 0.82% | 0.41% | 1.08% | 0.01% | 1.11% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, M.; Wang, Y.; Jiang, Y.; Ji, H.; Wang, B.; Huang, Z. A New Positioning Method Based on Multiple Ultrasonic Sensors for Autonomous Mobile Robot. Sensors 2020, 20, 17. https://doi.org/10.3390/s20010017
Shen M, Wang Y, Jiang Y, Ji H, Wang B, Huang Z. A New Positioning Method Based on Multiple Ultrasonic Sensors for Autonomous Mobile Robot. Sensors. 2020; 20(1):17. https://doi.org/10.3390/s20010017
Chicago/Turabian StyleShen, Mingqi, Yuying Wang, Yandan Jiang, Haifeng Ji, Baoliang Wang, and Zhiyao Huang. 2020. "A New Positioning Method Based on Multiple Ultrasonic Sensors for Autonomous Mobile Robot" Sensors 20, no. 1: 17. https://doi.org/10.3390/s20010017
APA StyleShen, M., Wang, Y., Jiang, Y., Ji, H., Wang, B., & Huang, Z. (2020). A New Positioning Method Based on Multiple Ultrasonic Sensors for Autonomous Mobile Robot. Sensors, 20(1), 17. https://doi.org/10.3390/s20010017