Influence of Resonances on the Noise Performance of SQUID Susceptometers
Abstract
:1. Introduction
2. Modeling
2.1. IR Characteristics
2.2. Noise
2.3. Summary of Noise Calculations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Clarke, J.; Braginski, A.I. The SQUID Handbook; Wiley Online Library: Hoboken, NJ, USA, 2004. [Google Scholar]
- Vinante, A.; Mezzena, R.; Prodi, G.A.; Vitale, S.; Cerdonio, M.; Falferi, P.; Bonaldi, M. Dc superconducting quantum interference device amplifier for gravitational wave detectors with a true noise temperature of 16 μK. Appl. Phys. Lett. 2001, 79, 2597–2599. [Google Scholar] [CrossRef] [Green Version]
- Harry, G.M.; Jin, I.; Paik, H.J.; Stevenson, T.R.; Wellstood, F.C. Two-stage superconducting-quantum-interference-device amplifier in a high-Q gravitational wave transducer. Appl. Phys. Lett. 2000, 76, 1446–1448. [Google Scholar] [CrossRef] [Green Version]
- Hari, R.; Salmelin, R. Magnetoencephalography: From SQUIDs to neuroscience: Neuroimage 20th anniversary special edition. Neuroimage 2012, 61, 386–396. [Google Scholar] [CrossRef]
- Devoret, M.H.; Wallraff, A.; Martinis, J.M. Superconducting qubits: A short review. arXiv 2004, arXiv:cond-mat/0411174. [Google Scholar]
- Kirtley, J.R.; Wikswo, J.P., Jr. Scanning SQUID microscopy. Annu. Rev. Mater. Sci. 1999, 29, 117–148. [Google Scholar] [CrossRef] [Green Version]
- Black, R.; Mathai, A.; Wellstood, F.; Dantsker, E.; Miklich, A.; Nemeth, D.; Kingston, J.; Clarke, J. Magnetic microscopy using a liquid nitrogen cooled YBa2Cu3O7 superconducting quantum interference device. Appl. Phys. Lett. 1993, 62, 2128–2130. [Google Scholar] [CrossRef]
- Veauvy, C.; Hasselbach, K.; Mailly, D. Scanning μ-superconduction quantum interference device force microscope. Rev. Sci. Instrum. 2002, 73, 3825–3830. [Google Scholar] [CrossRef]
- Finkler, A.; Segev, Y.; Myasoedov, Y.; Rappaport, M.L.; Ne’eman, L.; Vasyukov, D.; Zeldov, E.; Huber, M.E.; Martin, J.; Yacoby, A. Self-aligned nanoscale SQUID on a tip. Nano Lett. 2010, 10, 1046–1049. [Google Scholar] [CrossRef] [Green Version]
- Vu, L.; Wistrom, M.; Van Harlingen, D.J. Imaging of magnetic vortices in superconducting networks and clusters by scanning SQUID microscopy. Appl. Phys. Lett. 1993, 63, 1693–1695. [Google Scholar] [CrossRef] [Green Version]
- Kirtley, J.; Ketchen, M.; Stawiasz, K.; Sun, J.; Gallagher, W.; Blanton, S.; Wind, S. High-resolution scanning SQUID microscope. Appl. Phys. Lett. 1995, 66, 1138–1140. [Google Scholar] [CrossRef] [Green Version]
- Gardner, B.W.; Wynn, J.C.; Björnsson, P.G.; Straver, E.W.; Moler, K.A.; Kirtley, J.R.; Ketchen, M.B. Scanning superconducting quantum interference device susceptometry. Rev. Sci. Instrum. 2001, 72, 2361–2364. [Google Scholar] [CrossRef] [Green Version]
- Kirtley, J. Fundamental studies of superconductors using scanning magnetic imaging. Rep. Prog. Phys. 2010, 73, 126501. [Google Scholar] [CrossRef] [Green Version]
- Huber, M.E.; Koshnick, N.C.; Bluhm, H.; Archuleta, L.J.; Azua, T.; Björnsson, P.G.; Gardner, B.W.; Halloran, S.T.; Lucero, E.A.; Moler, K.A. Gradiometric micro-SQUID susceptometer for scanning measurements of mesoscopic samples. Rev. Sci. Instrum. 2008, 79, 053704. [Google Scholar] [CrossRef] [PubMed]
- Kirtley, J.R.; Paulius, L.; Rosenberg, A.J.; Palmstrom, J.C.; Holland, C.M.; Spanton, E.M.; Schiessl, D.; Jermain, C.L.; Gibbons, J.; Fung, Y.K.K.; et al. Scanning SQUID susceptometers with sub-micron spatial resolution. Rev. Sci. Instrum. 2016, 87, 093702. [Google Scholar] [CrossRef] [PubMed]
- Tesche, C.D.; Clarke, J. dc SQUID: Noise and Optimization. J. Low Temp. Phys. 1977, 29, 301–331. [Google Scholar] [CrossRef]
- Bruines, J.; de Waal, V.; Mooij, J. Comment on: “Dc SQUID: Noise and optimization” by Tesche and Clarke. J. Low Temp. Phys. 1982, 46, 383–386. [Google Scholar] [CrossRef]
- Hilbert, C.; Clarke, J. Measurements of the dynamic input impedance of a dc SQUID. J. Low Temp. Phys. 1985, 61, 237–262. [Google Scholar] [CrossRef]
- Enpuku, K.; Cantor, R.; Koch, H. Modeling the dc superconducting quantum interference device coupled to the multiturn input coil. III. J. Appl. Phys. 1992, 72, 1000–1006. [Google Scholar] [CrossRef]
- Huber, M.E.; Neil, P.A.; Benson, R.G.; Burns, D.A.; Corey, A.; Flynn, C.S.; Kitaygorodskaya, Y.; Massihzadeh, O.; Martinis, J.M.; Hilton, G. DC SQUID series array amplifiers with 120 MHz bandwidth (corrected). IEEE Trans. Appl. Supercond. 2001, 11, 4048–4053. [Google Scholar] [CrossRef]
- Knuutila, J.; Ahonen, A.; Tesche, C. Effects on dc SQUID characteristics of damping of input coil resonances. J. Low Temp. Phys. 1987, 68, 269–284. [Google Scholar] [CrossRef]
- Josephson, B.D. Possible new effects in superconductive tunnelling. Phys. Lett. 1962, 1, 251–253. [Google Scholar] [CrossRef]
- IC Design Software for Linux, OS X and Windows. Available online: http://www.wrcad.com/ (accessed on 13 September 2019).
- JSPICE. Available online: https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/spice/jspice.html (accessed on 11 March 2019).
Parameter | Symbol | Conversion Formula |
---|---|---|
Voltage | v | |
Magnetic flux | ||
Thermal noise parameter | ||
Voltage noise power | ||
Flux noise | ||
Hysteresis parameter |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davis, S.I.; Kirtley, J.R.; Moler, K.A. Influence of Resonances on the Noise Performance of SQUID Susceptometers. Sensors 2020, 20, 204. https://doi.org/10.3390/s20010204
Davis SI, Kirtley JR, Moler KA. Influence of Resonances on the Noise Performance of SQUID Susceptometers. Sensors. 2020; 20(1):204. https://doi.org/10.3390/s20010204
Chicago/Turabian StyleDavis, Samantha I., John R. Kirtley, and Kathryn A. Moler. 2020. "Influence of Resonances on the Noise Performance of SQUID Susceptometers" Sensors 20, no. 1: 204. https://doi.org/10.3390/s20010204
APA StyleDavis, S. I., Kirtley, J. R., & Moler, K. A. (2020). Influence of Resonances on the Noise Performance of SQUID Susceptometers. Sensors, 20(1), 204. https://doi.org/10.3390/s20010204