Two Different Methods to Measure the Stability of Acetabular Implants: A Comparison Using Artificial Acetabular Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acetabular Models and Cementless Acetabular Implant
2.2. Implant Stability Testing
2.2.1. Relative Micromotion
2.2.2. Push-Out Experiment
- Ultimate push-out force: The maximum force recorded during the push-out test.
- Interface stiffness: The positive slope of the force-displacement curve between 25% and 75% of the ultimate push-out force. The range of 25% to 75% was chosen as linear behavior was observed in this region of the force-displacement curve (Figure 6).
- Push-out energy: The area under the force-displacement curve of the push-out test.
2.3. Repeatability
2.4. Data Processing a Statistical Analysis
3. Results
3.1. Repeatability and Influence of Reinserting the Acetabular Implant in the Acetabular Models
3.2. Relative Micromotion Measurement
3.2.1. Loading Orientation
3.2.2. Acetabular Model Density
3.2.3. Press-Fit
3.3. Push-Out Experiment
3.4. Relation between Micromotions and Push-Out Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Orthopride, Belgian Hip and Knee Arthroplasty Registry: Annual Report 2015–2016. 2017, p. 67. Available online: https://www.ehealth.fgov.be/file/view/7a77de8d3e1a4ae8dbd375898a323670?filename=orthopride_annual_report_2016_final.pdf (accessed on 31 December 2019).
- Gheduzzi, S.; Miles, A.W. A review of pre-clinical testing of femoral stem subsidence and comparison with clinical data. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2007, 221, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Jasty, M.; Bragdon, C.; Burke, D.; O’Connor, D.; Lowenstein, J.; Harris, W.H. In vivo skeletal responses to porous-surfaced implants subjected to small induced motions. J. Bone Jt. Surg. 1997, 79, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Pilliar, R.M.; Lee, J.M.; Maniatopoulos, D.D.S. Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin. Orthop. Relat. Res. 1986, 208, 108–113. [Google Scholar] [CrossRef]
- Goossens, Q.; Leuridan, S.; Henyš, P.; Roosen, J.; Pastrav, L.; Mulier, M.; Desmet, W.; Denis, K.; Vander Sloten, J. Development of an acoustic measurement protocol to monitor acetabular implant fixation in cementless total hip Arthroplasty: A preliminary study. Med. Eng. Phys. 2017, 49, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Crosnier, E.A.; Keogh, P.S.; Miles, A.W. The effect of dynamic hip motion on the micromotion of press-fit acetabular cups in six degrees of freedom. Med. Eng. Phys. 2016, 38, 717–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crosnier, E.A.; Keogh, P.S.; Miles, A.W. A novel method to assess primary stability of press-fit acetabular cups. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2014, 228, 1126–1134. [Google Scholar] [CrossRef] [Green Version]
- Won, C.-H.; Hearn, T.C.; Tile, M. Micromotion of cementless hemispherical acetabular components. J. Bone Jt. Surg. 1995, 77, 484–489. [Google Scholar] [CrossRef] [Green Version]
- Kwong, L.M.; O’Connor, D.; Sedlacek, R.C.; Krushell, R.J.; Maloney, W.J.; Harris, W.H. A quantitative in vitro assessment of fit and screw fixation on the stability of a cementless hemispherical acetabular component. J. Arthroplast. 1994, 9, 163–170. [Google Scholar] [CrossRef]
- Stiehl, J.B.; MacMillan, E.; Skrade, D.A. Mechanical stability of porous-coated acetabular components in total hip arthroplasty. J. Arthroplast. 1991, 6, 295–300. [Google Scholar] [CrossRef]
- Perona, P.G.; Lawrence, J.; Paprosky, W.G.; Patwardhan, A.G.; Sartori, M. Acetabular micromotion as a measure of initial implant stability in primary hip arthroplasty. J. Arthroplast. 1992, 7, 537–547. [Google Scholar] [CrossRef]
- Pitto, R.P.; Willmann, G.; Schramm, M. Initial stability of modular acetabular components. comparative in-vitro study with polyethylene and ceramic liners. Biomed. Tech. 2001, 46, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, N.A.; Jaeger, S.; Janoszka, M.B.; Klotz, M.C.; Bruckner, T.; Bitsch, R.G. Comparison of the primary stability of a porous coated acetabular revision cup with a standard cup. J. Arthroplast. 2018, 33, 580–585. [Google Scholar] [CrossRef]
- Macdonald, W.; Carlsson, L.V.; Charnley, G.J.; Jacobsson, C.M. Press-fit acetabular cup fixation: Principles and testing. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 1999, 213, 33–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milne, L.P.; Kop, A.M.; Kuster, M.S. Polyaxial locking and compression screws improve construct stiffness of acetabular cup fixation: A biomechanical study. J. Arthroplast. 2014, 29, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
- Meneghini, R.M.; Stultz, A.D.; Watson, J.S.; Ziemba-Davis, M.; Buckley, C.A. Does ischial screw fixation improve mechanical stability in revision total hip arthroplasty? J. Arthroplast. 2010, 25, 1157–1161. [Google Scholar] [CrossRef] [PubMed]
- Adler, E.; Stuchin, S.A.; Kummer, F.J. Stability of press-fit acetabular cups. J. Arthroplast. 1992, 7, 295–301. [Google Scholar] [CrossRef]
- Meneghini, R.M.; Meyer, C.; Buckley, C.A.; Hanssen, A.D.; Lewallen, D.G. Mechanical stability of novel highly porous metal acetabular components in revision total hip arthroplasty. J. Arthroplast. 2010, 25, 337–341. [Google Scholar] [CrossRef]
- Tabata, T.; Kaku, N.; Hara, K.; Tsumura, H. Initial stability of cementless acetabular cups: Press-fit and screw fixation interaction—An in vitro biomechanical study. Eur. J. Orthop. Surg. Traumatol. 2015, 25, 497–502. [Google Scholar] [CrossRef] [Green Version]
- Goriainov, V.; Jones, A.; Briscoe, A.; New, A.; Dunlop, D. Do the cup surface properties influence the initial stability? J. Arthroplast. 2014, 29, 757–762. [Google Scholar] [CrossRef]
- Small, S.R.; Berend, M.E.; Howard, L.A.; Rogge, R.D.; Buckley, C.A.; Ritter, M.A. High initial stability in porous titanium acetabular cups: A biomechanical study. J. Arthroplast. 2013, 28, 510–516. [Google Scholar] [CrossRef]
- Baleani, M.; Fognani, R.; Toni, A. Initial stability of a cementless acetabular cup design: Experimental investigation on the effect of adding fins to the rim of the cup. Artif. Organs 2001, 25, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Curtis, M.J.; JInnah, R.H.; Wilson, V.D.; Hungerford, D.S. The initial stability of uncemented acetabular components. J. Bone Jt. Surg. 1992, 74, 372–376. [Google Scholar] [CrossRef]
- Fehring, K.A.; Owen, J.R.; Kurdin, A.A.; Wayne, J.S.; Jiranek, W.A. Initial stability of press-fit acetabular components under rotational forces. J. Arthroplast. 2014, 29, 1038–1042. [Google Scholar] [CrossRef] [PubMed]
- Goldman, A.H.; Armstrong, L.C.; Owen, J.R.; Wayne, J.S.; Jiranek, W.A. Does increased coefficient of friction of highly porous metal increase initial stability at the acetabular interface? J. Arthroplast. 2016, 31, 721–726. [Google Scholar] [CrossRef]
- Patel, P.S.; Shepherd, D.E.; Hukins, D.W. Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone. BMC Musculoskelet. Disord. 2008, 9, 137. [Google Scholar] [CrossRef] [Green Version]
- Pujari-Palmer, M.; Robo, C.; Persson, C.; Procter, P.; Engqvist, H. Influence of cement compressive strength and porosity on augmentation performance in a model of orthopedic screw pull-out. J. Mech. Behav. Biomed. Mater. 2018, 77, 624–633. [Google Scholar] [CrossRef]
- Mackenzie, J.R.; Callaghan, J.J.; Pedersen, D.R.; Brown, T.D. Areas of contact and extent of gaps with implantation of oversized acetabular components in total hip arthroplasty. Clin. Orthop. Relat. Res. 1994, 298, 127–136. [Google Scholar] [CrossRef]
- Bergmann, G.; Deuretzbacher, G.; Heller, M.; Graichen, F.; Rohlmann, A.; Strauss, J.; Duda, G. Hip contact forces and gait patterns from routine activities. J. Biomech. 2001, 34, 859–871. [Google Scholar] [CrossRef]
- Antoniades, G.; Smith, E.J.; Deakin, A.H.; Wearing, S.C.; Sarungi, M. Primary stability of two uncemented acetabular components of different geometry: Hemispherical or peripherally enhanced? Bone Jt. Res. 2013, 2, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Weißmann, V.; Boss, C.; Bader, R.; Hansmann, H. A novel approach to determine primary stability of acetabular press-fit cups. J. Mech. Behav. Biomed. Mater. 2018, 80, 1–10. [Google Scholar] [CrossRef]
- Saleh, K.J.; Bear, B.; Bostrom, M.; Wright, T.; Sculco, T.P. Initial Stability of Press-Fit Acetabular Components: An In Vitro Biomechanical Study. Am. J. Orthop. 2008, 37, 519. [Google Scholar] [PubMed]
- Dalstra, M.; Huiskes, R.; Odgaard, A.; van Erning, L. Mechanical and textural properties of pelvic trabecular bone. J. Biomech. 1993, 26, 523–535. [Google Scholar] [CrossRef] [Green Version]
- Amirouche, F.; Solitro, G.; Broviak, S.; Gonzalez, M.; Goldstein, W.; Barmada, R. Factors influencing initial cup stability in total hip arthroplasty. Clin. Biomech. 2014, 29, 1177–1185. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.-T.; Chang, C.-H.; Huang, H.-L.; Zobitz, M.E.; Chen, W.-P.; Lai, K.-A.; An, K.-N. The number of screws, bone quality, and friction coefficient affect acetabular cup stability. Med. Eng. Phys. 2007, 29, 1089–1095. [Google Scholar] [CrossRef] [PubMed]
- Gheduzzi, S.; Clements, J.P.; Webb, J.C.J.; Schmotzer, H.; Learmonth, I.D.; Miles, A.W. In-vitro post-operative stem stability using composite and cadaveric models. In Proceedings of the 51st annual meeting of the Orthopaedic Research Society, Washington, DC, USA, 20–23 February 2005. [Google Scholar]
Denotation | Density [g/cc] | Cavity Diameter [mm] | Specimen |
---|---|---|---|
C515 | 0.32 | 51.5 | 1 |
C510 | 0.32 | 51.0 | 2 |
L515 | 0.48 | 51.5 | 3-4-5 |
L510 | 0.48 | 51.0 | 6-7-8 |
H515 | 0.80 | 51.5 | 9-10-11 |
H510 | 0.80 | 51.0 | 12-13-14 |
Type | N Micromotion Experiment | N Push-Out Experiment |
---|---|---|
C515 | 1 | 1 |
C510 | 1 | 1 |
L515 | 6 | 3 |
L510 | 5 * | 2 * |
H515 | 5 | 3 |
H510 | 5 | 3 |
Type | TRMM 0° [µm] Mean [Min, Max] | TRMM 30° [µm] Mean [Min, Max] |
---|---|---|
C515 | 69 [–] | 73 [–] |
C510 | 54 [–] | 51 [–] |
L515 | 53 [46, 58] | 54 [45, 69] |
L510 | 62 [56, 71] | 58 [55, 62] |
H515 | 38 [29, 44] | 29 [22, 35] |
H510 | 29 [25, 32] | 27 [23, 32] |
Type | Ultimate Push-Out Force [N] Mean [Min, Max] | Interface Stiffness [N/mm] Mean [Min, Max] | Push-Out Energy [J] Mean [Min, Max] |
---|---|---|---|
C515 | 205 [–] | 545 [–] | 0.89 [–] |
C510 | 290 [–] | 1025 [–] | 1.07 [–] |
L515 | 464 [407, 510] | 1666 [1242, 2186] | 1.86 [1.66, 2.14] |
L510 | 885 [869, 901] | 2534 [2376, 2692] | 3.25 [3.15, 3.35] |
H515 | 1181 [1093, 1236] | 4565 [4165, 5340] | 4.49 [3.95, 5.01] |
H510 | 1920 [1698, 2154] | 6798 [6461, 7186] | 6.55 [4.82, 7.64] |
Push-Out Experiment Stability Metric | Slope Coefficient | R2 | |
---|---|---|---|
0° | |||
Ultimate push-out force | −0.018 µm/N | 0.617 | |
Interface stiffness | −0.006 µm/N/mm | 0.668 | |
Push-out energy | −5.250 µm/J | 0.638 | |
30° | |||
Ultimate push-out force | −0.021 µm/N | 0.599 | |
Interface stiffness | −0.007 µm/N/mm | 0.688 | |
Push-out energy | −6.116 µm/J | 0.620 |
Push-Out Experiment Stability Metric | Slope Coefficient | R2 | |
---|---|---|---|
0° | |||
Ultimate push-out force | −0.011 µm/N | 0.480 | |
Interface stiffness | −0.003 µm/N/mm | 0.486 | |
Push-out energy | −3.105 µm/J | 0.471 | |
30° | |||
Ultimate push-out force | −0.013 µm/N | 0.393 | |
Interface stiffness | −0.004 µm/N/mm | 0.430 | |
Push-out energy | −3.802 µm/J | 0.425 |
Push-Out Experiment Stability Metric | Slope Coefficient | R2 | |
---|---|---|---|
0° | |||
Ultimate push-out force | −0.016 µm/N | 0.572 | |
Interface stiffness | −0.005 µm/N/mm | 0.634 | |
Push-out energy | −4.500 µm/J | 0.597 | |
30° | |||
Ultimate push-out force | −0.019 µm/N | 0.566 | |
Interface stiffness | −0.006 µm/N/mm | 0.644 | |
Push-out energy | −5.367 µm/J | 0.574 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goossens, Q.; Pastrav, L.C.; Mulier, M.; Desmet, W.; Vander Sloten, J.; Denis, K. Two Different Methods to Measure the Stability of Acetabular Implants: A Comparison Using Artificial Acetabular Models. Sensors 2020, 20, 254. https://doi.org/10.3390/s20010254
Goossens Q, Pastrav LC, Mulier M, Desmet W, Vander Sloten J, Denis K. Two Different Methods to Measure the Stability of Acetabular Implants: A Comparison Using Artificial Acetabular Models. Sensors. 2020; 20(1):254. https://doi.org/10.3390/s20010254
Chicago/Turabian StyleGoossens, Quentin, Leonard Cezar Pastrav, Michiel Mulier, Wim Desmet, Jos Vander Sloten, and Kathleen Denis. 2020. "Two Different Methods to Measure the Stability of Acetabular Implants: A Comparison Using Artificial Acetabular Models" Sensors 20, no. 1: 254. https://doi.org/10.3390/s20010254
APA StyleGoossens, Q., Pastrav, L. C., Mulier, M., Desmet, W., Vander Sloten, J., & Denis, K. (2020). Two Different Methods to Measure the Stability of Acetabular Implants: A Comparison Using Artificial Acetabular Models. Sensors, 20(1), 254. https://doi.org/10.3390/s20010254