Low-Complexity Joint Range and Doppler FMCW Radar Algorithm Based on Number of Targets
Abstract
:1. Introduction
2. System Model and Conventional Detection Algorithm Using 2D FFT
System Model
3. Low-Complexity FMCW Radar Algorithms
3.1. Low-Complexity FMCW Radar Algorithms Based on ROI
3.2. Low-Complexity Algorithm Using Partial DFT
3.3. Complexity Analysis
3.4. Proposed FMCW Radar Algorithm with Further Reduced Complexity
4. Experiment Results
4.1. Experimental Setup
4.2. Experiment Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mahafza, B.R. Radar Systems Analysis and Design Using MATLAB, 3rd ed.; CRC Press: Boca Raton, FL, USA, May 2013. [Google Scholar]
- Richards, M.A. Fundementals of Radar Signal Processing; Tata McGraw-Hill Education: New York, NY, USA, 2005. [Google Scholar]
- Levanon, N. Radar Signals, 1st ed.; Wiley: New York, NY, USA, 2004. [Google Scholar]
- Skolnik, M.I. Introduction to Radar Systems; Tata McGraw-Hill Education: New York, NY, USA, 2001. [Google Scholar]
- Jiang, D.; Liu, M.; Gao, Y.; Gao, Y.; Fu, W.; Han, Y. Time-matching random finite set-based filter for radar multi-target tracking. Sensors 2018, 18, 4416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Sarrazin, J.; Valerio, G.; Istrate, D. Estimation of human body vital signs based on 60 GHz Doppler radar using a bound-constrained optimization algorithm. Sensors 2018, 18, 2254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stove, A.G. Linear FMCW radar techniques. IEE Proc. Rad. Signal Process. 1992, 139, 343–350. [Google Scholar] [CrossRef]
- Dudek, M.; Nasr, I.; Bozsik, G.; Hamouda, M.; Kissinger, D.; Fischer, G. System analysis of a phased-array radar applying adaptive beam-control for future automotive safety applications. IEEE Trans. Veh. Tech. 2015, 64, 34–47. [Google Scholar] [CrossRef]
- Saponara, S.; Neri, B. Radar sensor signal acquisition and multidimensional FFT processing for surveillance applications in transport systems. IEEE Trans. Instrum. Meas. 2017, 66, 604–615. [Google Scholar] [CrossRef]
- Matthew, A.; Matthew, R.; Kevin, C. On the application of digital moving target indication techniques to short-range FMCW radar data. IEEE Sens. J. 2018, 18, 4167–4175. [Google Scholar]
- Jin, Y.; Kim, B.; Kim, S.; Lee, J. Design and implementation of FMCW surveillance radar based on dual chirps. Elektron. Ir Elektrotechnika 2018, 24, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Belyaev, E.; Molchanov, P.; Vinei, A.; Koucheryavy, Y. The use of automotive radars in video-based overtaking assistance applications. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1035–1042. [Google Scholar] [CrossRef]
- Pan, X.; Xiang, C.; Liu, S.; Yan, S. Low-complexity time-domain ranging algorithm with FMCW sensors. Sensors 2019, 19, 3176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.; Jin, Y.; Kim, S.; Lee, J. A low-complexity FMCW surveillance radar algorithm using two random beat signals. Sensors 2018, 19, 608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Oh, D.; Lee, J. Joint DFT-ESPRIT estimation for TOA and DOA in vehicle FMCW radars. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1710–1713. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.G.; Soh, Y.C. Region-of-interest based resource allocation for conversational video communication of H.264/AVC. IEEE Trans. Circuits Syst. Video Technol. 2008, 18, 134–139. [Google Scholar] [CrossRef]
- Dehkordi, S.; Appenrodt, N.; Dickmann, J.; Waldschmidt, C. Region of interest based adaptive high resolution parameter estimation with applications in automotive radar. In Proceedings of the 2018 19th International Radar Symposium (IRS), Bonn, Germany, 20–22 June 2018. [Google Scholar] [CrossRef]
- Khan, W.; Qureshi, I.M.; Basit, A.; Khan, W. Range-bins-based MIMO frequency diverse array radar with logarithmic frequency offset. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 885–888. [Google Scholar] [CrossRef]
- Chan, H.C. Evaluation of the FMICW Waveform in HF Surface Wave Radar Applications; DREO Report; Defence Research Estabilishment: Ottawa, ON, Canada, 1994. [Google Scholar]
- Haykin, S. Radar Array Processing; Springer: New York, NY, USA, 1993. [Google Scholar]
- Kim, B.; Kim, S.; Lee, J. A novel DFT-based DOA estimation by a virtual array extension using simple multiplications for FMCW radar. Sensors 2018, 18, 1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Value |
---|---|
Center frequency, | 24 GHz |
Bandwidth, B | 1 GHz |
Chirp duration, T | 400 s |
Number of chirps per one frame, L | 256 |
Number of frames, | 32 |
Sampling frequency, | 5 MHz |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.-s.; Kim, S.; Jin, Y.; Lee, J. Low-Complexity Joint Range and Doppler FMCW Radar Algorithm Based on Number of Targets. Sensors 2020, 20, 51. https://doi.org/10.3390/s20010051
Kim B-s, Kim S, Jin Y, Lee J. Low-Complexity Joint Range and Doppler FMCW Radar Algorithm Based on Number of Targets. Sensors. 2020; 20(1):51. https://doi.org/10.3390/s20010051
Chicago/Turabian StyleKim, Bong-seok, Sangdong Kim, Youngseok Jin, and Jonghun Lee. 2020. "Low-Complexity Joint Range and Doppler FMCW Radar Algorithm Based on Number of Targets" Sensors 20, no. 1: 51. https://doi.org/10.3390/s20010051
APA StyleKim, B. -s., Kim, S., Jin, Y., & Lee, J. (2020). Low-Complexity Joint Range and Doppler FMCW Radar Algorithm Based on Number of Targets. Sensors, 20(1), 51. https://doi.org/10.3390/s20010051