Vulnerability Assessment of Buildings due to Land Subsidence Using InSAR Data in the Ancient Historical City of Pistoia (Italy)
Abstract
:1. Introduction
2. Study Area
2.1. Geological Setting
2.2. Previous Investigations
3. Materials and Methods
3.1. InSAR Processing and Analysis
3.2. Field Surveys
3.3. Fragility Curves and Vulnerability Maps
4. Results
4.1. InSAR Processing and Analysis
4.2. Field Surveys Maps
4.3. Fragility Curves and Vulnerability Maps
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Corapcioglu, M.Y. Land Subsidence—A State-of-the-Art Review. In Fundamentals of Transport Phenomena in Porous Media; NATO ASI Series (Series E: Applied Sciences); Bear, J., Corapcioglu, M.Y., Eds.; Springer: Dordrecht, The Netherlands, 1984; Volume 82. [Google Scholar]
- Wu, J.C.; Shi, X.Q.; Ye, S.S.J.; Xue, Y.Q.; Zhang, Y.; Yu, J. Numerical simulation of the land subsidence induced by groundwater overexploitation in Su-Xi-Chang area, China. Environ. Geol. 2009, 57, 1409–1421. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2013: The Physical Sciences Basis. Contribution of Working Group I to the Fifth Assesment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Feyen, L. Extreme sea level rise along Europe’s coast. Earth’s Future 2017, 5, 304–323. [Google Scholar] [CrossRef]
- Avallone, A.; Zollo, A.; Briole, P.; Delacourt, C.; Beauducel, F. Subsidence of Campi Flegrei (Italy detected by SAR interferometry. Geophys. Res. Lett. 1999, 25, 2303. [Google Scholar] [CrossRef] [Green Version]
- Carminati, E.; Doglioni, C.; Scrocca, D. Apennines subduction-related subsidence of Venice (Italy). Geophys. Res. Lett. 2003, 30, 1717. [Google Scholar] [CrossRef]
- Tomás, R.; Herrera, G.; Delgado, J.; Lopez-Sanchez, J.M.; Mallorquí, J.J.; Mulas, J. A ground subsidence study based on DInSAR data: Calibration of soil parameters and subsidence prediction in Murcia City (Spain). Eng. Geol. 2010, 111, 19–30. [Google Scholar] [CrossRef]
- Ezquerro, P.; Herrera, G.; Marchamalo, M.; Tomas, R.; Béjar-Pizarro, M.; Martínez, R. A quasi-elastic aquifer deformational behavior: Madrid aquifer case study. J. Hydrol. 2014, 519, 1192–1204. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Li, Q.; Zhenhong, L.; Hoey, T.; Yanxiong, L.; Chisheng, W. Land Subsidence over Oilfields in the Yellow River Delta. Remote Sens. 2015, 7, 1540–1564. [Google Scholar] [CrossRef] [Green Version]
- Przyłucka, M.; Herrera, G.; Graniczny, M.; Colombo, D.; Béjar-Pizarro, M. Combination of Conventional and Advanced DInSAR to Monitor Very Fast Mining Subsidence with TerraSAR-X Data: Bytom City (Poland). Remote Sens. 2015, 7, 5300–5328. [Google Scholar] [CrossRef] [Green Version]
- Solari, L.; Ciampalini, A.; Raspini, F.; Bianchini, S.; Moretti, S. PSInSAR analysis in the Pisa urban area (Italy): A case study of subsidence related to stratigraphical factors and urbanization. Remote Sens. 2016, 8, 120. [Google Scholar] [CrossRef] [Green Version]
- Solari, L.; Del Soldato, M.; Bianchini, S.; Ciampalini, A.; Ezquerro, P.; Montalti, R.; Raspini, F.; Moretti, S. From ERS 1/2 to Sentinel-1: Subsidence monitoring in Italy in the last two decades. Front. Earth Sci. 2018, 6, 149. [Google Scholar] [CrossRef]
- USGS; Lofgren, B.E.; Klausing, R.L. Land Subsidence due to Ground Water Withdrawal Tulare-Wasco Area California; Technical Report; United States Government Printing Office: Washington, DC, USA, 1969.
- Bitelli, G.; Bonsignore, F.; Unguendoli, M. Levelling and GPS networks to monitor ground subsidence in the Southern Po Valley. J. Geodyn. 2000, 30, 355–369. [Google Scholar] [CrossRef]
- Tomás, R.; Romero, R.; Mulas, J.; Marturià, J.J.; Mallorquí, J.J.; Lopez-Sanchez, J.M.; Herrera, G.; Gutiérrez, F.; González, P.J.; Fernández, J.; et al. Radar interferometry techniques for the study of ground subsidence phenomena: A review of practical issues through cases in Spain. Environ. Earth Sci. 2014, 71, 163–181. [Google Scholar] [CrossRef] [Green Version]
- Simonetto, E.; Durand, S.; Burdack, J.; Polidori, L.; Morel, L.; Nicolas-Duroy, J. Combination of INSAR and GNSS measurements for ground displacement monitoring. Procedia Technol. 2014, 16, 192–198. [Google Scholar] [CrossRef] [Green Version]
- Zulkifli, N.A.; Din, A.H.M.; Som, Z.A.M. Vertical land motion quantification using space-based geodetic methods: A review. IOP Conf. Ser. Earth Environ. Sci. 2018, 169, 012024. [Google Scholar] [CrossRef]
- Farolfi, G.; Del Soldato, M.; Bianchini, S.; Casagli, N. A procedure to use GNSS data to calibrate satellite PSI data for the study of subsidence: An example from the north-western Adriatic coast (Italy). Eur. J. Remote Sens. 2019, 52, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Tomás, R.; Li, Z. Earth Observations for Geohazards: Present and Future Challenges. Remote Sens. 2017, 9, 194. [Google Scholar] [CrossRef] [Green Version]
- Raspini, F.; Cigna, F.; Moretti, S. Multi-Temporal Mapping of Land Subsidence at Basin Scale Exploiting Persistent Scatterer Interferometry: Case Study of Gioia Tauro Plain (Italy). J. Maps 2012, 8, 514–524. [Google Scholar] [CrossRef] [Green Version]
- Colombo, D.; Farina, P.; Moretti, S.; Nico, G.; Prati, C. Land subsidence in the Firenze-Prato-Pistoia basin measured by means of spaceborne SAR interferometry. In Proceedings of the Geoscience and Remote Sensing Symposium, IGARSS’03, Toulouse, France, 21–25 July 2003; IEEE: Piscataway, NJ, USA, 2003; Volume 4, pp. 2927–2929. [Google Scholar]
- Canuti, P.; Casagli, N.; Farina, P.; Ferretti, A.; Marks, F.; Menduni, G. Analisi dei fenomeni di subsidenza nel bacino del fiume Arno mediante interferometria radar. Giornale di Geologia Applicata 2006, 4, 131–136. [Google Scholar]
- Rosi, A.; Tofani, V.; Agostini, A.; Tanteri, L.; Stefanelli, C.T.; Catani, F.; Casagli, N. Subsidence mapping at regional scale using persistent scatters interferometry (PSI): The case of Tuscany region (Italy). Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 328–337. [Google Scholar] [CrossRef]
- Del Soldato, M.; Farolfi, G.; Rosi, A.; Raspini, F.; Casagli, N. Subsidence evolution of the Firenze–Prato–Pistoia plain (Central Italy) combining PSI and GNSS data. Remote Sens. 2018, 10, 1146. [Google Scholar] [CrossRef] [Green Version]
- Fondelli, M. Studio dei movimenti verticali del suolo nell’area urbana della Città di Pistoia. Bollettino di Geodesia e Scienze Affini Rivista Dell’ Istituto Geografico Militare Italy 1975, 34, 52039135. [Google Scholar]
- Fancelli, R.; Focardi, P.; Gozzi, F.; Vannucchi, G. Dissesti Statici dei fabbricati nel centro storico di Pistoia (1964–1966). In Proceedings of the XIV Convegno Nazionale di Geotecnica, Firenze, Italy, 28–30 October 1980. (In Italian). [Google Scholar]
- Béjar-Pizarro, M.; Notti, D.; Mateos, R.M.; Ezquerro, P.; Centolanza, G.; Herrera, G.; Bru, G.; Sanabria, M.; Solari, L.; Duro, J.; et al. Mapping Vulnerable Urban Areas Affected by Slow-Moving Landslides Using Sentinel-1 InSAR Data. Remote Sens. 2017, 9, 876. [Google Scholar] [CrossRef] [Green Version]
- Sarro, R.; Riquelme, A.; García-Davalillo, J.C.; Mateos, R.M.; Tomás, R.; Pastor, J.L.; Cano, M.; Herrera, G. Rockfall simulation based on UAV photogrammetry data obtained during an emergency declaration: Application at a cultural heritage site. Remote Sens. 2018, 10, 1923. [Google Scholar] [CrossRef] [Green Version]
- Del Soldato, M.; Riquelme, A.; Bianchini, S.; Tomàs, R.; Di Martire, D.; De Vita, P.; Moretti, S.; Calcaterra, D. Multisource data integration to investigate one century of evolution for the Agnone landslide (Molise, southern Italy). Landslides 2018, 15, 2113–2128. [Google Scholar] [CrossRef] [Green Version]
- Tomás, R.; Pagán, J.I.; Navarro, J.A.; Cano, M.; Pastor, J.L.; Riquelme, A.; Cuevas-González, M.; Crosetto, M.; Barra, A.; Monserrat, O.; et al. Semi-Automatic Identification and Pre-Screening of Geological–Geotechnical Deformational Processes Using Persistent Scatterer Interferometry Datasets. Remote Sens. 2019, 11, 1675. [Google Scholar] [CrossRef] [Green Version]
- Solari, L.; Bianchini, S.; Franceschini, R.; Barra, A.; Monserrat, O.; Thuegaz, P.; Davide, B.; Crosetto, M.; Catani, F. Satellite interferometric data for landslide intensity evaluation in mountainous regions. Int. J. Appl. Earth Obs. Geoinf. 2020, 87, 102028. [Google Scholar] [CrossRef]
- Negulescu, C.; Foerster, E. Parametric studies and quantitative assessment of the vulnerability of a RC frame building exposed to differential settlements. Nat. Hazards Earth Syst. Sci. 2010, 10, 1781–1792. [Google Scholar] [CrossRef] [Green Version]
- Fotopoulou, S.; Pitilakis, K. Fragility curves for reinforced concrete buildings to seismically triggered slow-moving slides. Soil Dyn. Earthq. Eng. 2013, 48, 143–161. [Google Scholar] [CrossRef]
- Del Soldato, M.; Solari, L.; Poggi, F.; Raspini, F.; Tomas, R.; Fanti, R.; Casagli, N. Landslide-Induced Damage Probability Estimation Coupling InSAR and Field Survey Data by Fragility Curves. Remote Sens. 2019, 11, 1486. [Google Scholar] [CrossRef] [Green Version]
- Capecchi, F.; Guazzone, G.; Pranzini, G. Il bacino lacustre di firenze-prato-pistoia; geologia del sottosuolo e ricostruzione evolutiva. Boll. Soc. Geol. Ital. 1975, 94, 637–660. [Google Scholar]
- Briganti, R.; Ciufegni, S.; Coli, M.; Polimeni, S.; Pranzini, G. Underground Florence; Plio-Quaternary geological evolution of the Florence area. Bollettino Della Società Geologica Italiana 2003, 122, 435–445. [Google Scholar]
- Winter, T.C.; Harvey, J.W.; Franke, O.L.; Alley, W.M. Ground Water and Surface Water A Single Resource; U.S. Geological Survey Circular; U.S. Geological Survey: Reston, VA, USA, 1998; Volume 1139, pp. 1–79.
- Puccinelli, A.; D’Amato Avanzi, G.; Perilli, N.; Verani, M. Carta Geologica d’Italia Alla Scala 1:50,000, Foglio 262; Servizio Geologico d’Italia—ISPRA: Pistoia, Italy, 2015; ISBN 978-88-9311-044-0. [Google Scholar]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef] [Green Version]
- Kwam, P.; Vidakovic, B. Non-Parametric Statistics with Applications to Science and Engineering; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Covello, F.; Battazza, F.; Coletta, A.; Lopinto, E.; Fiorentino, C.; Pietranera, L.; Valentini, G.; Zoffoli, S. COSMO-SkyMed an existing opportunity for observing the Earth. J. Geodyn. 2010, 49, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Mora, O.; Mallorquí, J.J.; Broquetas, A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2243–2253. [Google Scholar] [CrossRef]
- Blanco-Sánchez, J.; Mallorquí, J.; Duque, S.; Monells, D. The Coherent Pixels Technique (CPT): An Advanced DInSAR Technique for Nonlinear Deformation Monitoring. Pure Appl. Geophys. 2008, 165, 1167–1193. [Google Scholar] [CrossRef]
- Confuorto, P.; Di Martire, D.; Centolanza, G.; Iglesias, R.; Mallorqui, J.J.; Novellino, A.; Plank, S.; Ramondini, M.; Thuro, K.; Calcaterra, D. Post-failure evolution analysis of a rainfall-triggered landslide by multi-temporal interferometry SAR approaches integrated with geotechnical analysis. Remote Sens. Environ. 2017, 188, 51–72. [Google Scholar] [CrossRef]
- Fernandez, J.; Prieto, J.F.; Escayo, J.; Camacho, A.G.; Luzón, F.; Tiampo, K.F.; Palano, M.; Abajo, T.; Pérez, E.; Velasco, J.; et al. Modeling the two- and three-dimensional displacement field in Lorca, Spain, subsidence and the global implications. Sci. Rep. 2018, 8, 14782. [Google Scholar] [CrossRef]
- Ezquerro, P.; Tomás, R.; Béjar-Pizarro, M.; Fernández-Merodo, J.A.; Guardiola-Albert, C.; Staller, A.; Sánchez-Sobrino, J.A.; Herrera, G. Improving multi-technique monitoring using Sentinel-1 and Cosmo-SkyMed data and upgrading groundwater model capabilities. Sci. Total Environ. 2019. [Google Scholar] [CrossRef] [Green Version]
- Raspini, F.; Bianchini, S.; Ciampalini, A.; Del Soldato, M.; Solari, L.; Novali, F.; Del Conte, S.; Rucci, A.; Ferretti, A.; Casagli, N. Continuous, semi-automatic monitoring of ground deformation using Sentinel-1 satellites. Sci. Rep. 2018, 8, 7253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzo, M.; Casu, F.; Lanari, R. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sens. Environ. 2006, 102, 195–210. [Google Scholar] [CrossRef]
- Notti, D.; Herrera, G.; Bianchini, S.; Meisina, C.; García-Davalillo, J.C.; Zucca, F.A. Methodology for improving landslide PSI data analysis. Int. J. Remote Sens. 2014, 35, 2186–2214. [Google Scholar] [CrossRef]
- Shepard, D. A Two-Dimensional Interpolation Function for Irregularly Spaced Data. In Proceedings of the 1968 23rd ACM National Conference, Las Vegas, NV, USA, 27–29 August 1968; ACM: New York, NY, USA, 1956; pp. 517–524. [Google Scholar]
- Bartier, P.M.; Keller, C.P. Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Comput. Geosci. 1996, 22, 795–799. [Google Scholar] [CrossRef]
- Del Soldato, M.; Bianchini, S.; Calcaterra, D.; De Vita, P.; Di Martire, D.; Tomás, R.; Casagli, N. A new approach for landslide-induced damage assessment. Geomatics. Nat. Hazards Risk 2017, 8, 1524–1537. [Google Scholar] [CrossRef]
- Regione Toscana. 1:5000 Official Cadastral Map of Pistoia. 2019. Available online: http://www.regione.toscana.it/-/geoscopio (accessed on 7 February 2020).
- Mohamed Nazri, F. Fragility Curves. Seismic Fragility Assessment for Buildings due to Earthquake Excitation; Springer: Singapore, 2018; pp. 3–30. [Google Scholar]
- Peduto, D.; Ferlisi, S.; Nicodemo, G.; Reale, D.; Pisciotta, G.; Gullà, G. Empirical fragility and vulnerability curves for buildings exposed to slow-moving landslides at medium and large scales. Landslides 2017, 14, 1993–2007. [Google Scholar] [CrossRef]
- Billah, A.; Alam, M. Seismic Fragility Assessment of Highway Bridges: A State-of-the-Art Review. Struct. Infrastruct. Eng. 2014, 1–29. [Google Scholar] [CrossRef]
- Italian Revenue Agency. 2019. Available online: https://wwwt.agenziaentrate.gov.it/geopoi_omi/index.php (accessed on 9 May 2020).
- Wiebe, D.; Cox, D. Application of fragility curves to estimate building damage and economic loss at a community scale: A case study of Seaside, Oregon. Nat. Hazards 2014, 71, 2043–2061. [Google Scholar] [CrossRef]
- Goda, K.; Song, J. Uncertainty modeling and visualization for tsunami hazard and risk mapping: A case study for the 2011 Tohoku earthquake. Stoch. Environ. Res. Risk Assess. 2016, 30, 2271–2285. [Google Scholar] [CrossRef] [Green Version]
- Galloway, D.L.; Jones, D.R.; Ingebritsen, S.E. Land Subsidence in the United States; U.S. Geological Survey Circular 1182; US Government Printing Office: Reston, VA, USA, 1999; 175p.
- Galloway, D.L.; Hoffmann, J. The application of satellite differential SAR interferometry-derived ground displacements in hydrogeology. Hydrogeol. J. 2006, 15, 133–154. [Google Scholar] [CrossRef] [Green Version]
- Peduto, D.; Nicodemo, G.; Caraffa, M.; Gullà, G. Quantitative analysis of consequences to masonry buildings interacting with slow-moving landslide mechanisms: A case study. Landslides 2018, 15, 017–2030. [Google Scholar] [CrossRef]
- Del Soldato, M.; Solari, L.; Raspini, F.; Bianchini, S.; Ciampalini, A.; Montalti, R.; Ferretti, A.; Pellegrineschi, V.; Casagli, N. Monitoring Ground Instabilities Using SAR Satellite Data: A Practical Approach. ISPRS Int. J. Geo-Inf. 2019, 8, 307. [Google Scholar] [CrossRef] [Green Version]
Satellite | CSK Ascending | CSK Descending | S-1 Ascending | S-1 Descending |
---|---|---|---|---|
Number of images | 60 | 34 | 136 | 128 |
First image | 7/1/2015 | 22/2/2015 | 12/12/2014 | 22/3/2015 |
Last image | 4/3/2018 | 26/11/2017 | 13/5/2018 | 17/5/2018 |
Number of interferograms | 287 | 141 | - | - |
Processed area (km2) | 112 | 69 | 32,529.6 | 29,173.5 |
Max. temporal baseline (days) | 288 | 443 | - | - |
Max. spatial baseline (m) | 598 | 1146 | - | - |
Multilook (Az × Rg) | 3 × 3 | 3 × 3 | - | - |
Number of DS | 95,485 | 84,279 | 501,201 | 365,553 |
PS + DS Density (PS + DS/km2) | 852.5 | 1221.4 | 15.4 | 12.5 |
Building Type | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
District | Houses | Industry | Office | Shops | Warehouse | Final Value | |||||
€/m2 | % | €/m2 | % | €/m2 | % | €/m2 | % | €/m2 | % | €/m2 | |
B1 | 1525 | 26.5 | 800 | 13.7 | 1275 | 22.2 | 1450 | 24.8 | 750 | 12.8 | 1252.4 |
B2 | 1810 | 31.3 | 0 | 0.0 | 1575 | 27.0 | 1675 | 28.8 | 750 | 12.9 | 1571.2 |
C1 | 1510 | 25.1 | 800 | 13.6 | 1400 | 23.8 | 1450 | 24.7 | 750 | 12.8 | 1275.3 |
D1 | 1590 | 26.7 | 825 | 14.2 | 1325 | 22.8 | 1375 | 23.7 | 775 | 12.5 | 1267.8 |
D2 | 1425 | 23.0 | 760 | 14.4 | 1400 | 23.0 | 1575 | 25.5 | 875 | 14.0 | 1284.8 |
D3 | 1440 | 24.8 | 775 | 14.3 | 1400 | 24.3 | 1450 | 24.3 | 725 | 12.2 | 1250.2 |
E1 | 1460 | 25.2 | 635 | 13.9 | 1375 | 23.9 | 1425 | 25.7 | 625 | 11.3 | 1221.5 |
Damage Probability Range (%) | (0–20) | (20–40) | (40–60) | (60–80) | (80–100) |
---|---|---|---|---|---|
No Not Dmg. Buildings | 30 | 31 | 22 | 10 | 14 |
No Dmg. Buildings | 32 | 20 | 20 | 18 | 30 |
Percentage of Damaged (%) | 52 | 39 | 48 | 64 | 68 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezquerro, P.; Del Soldato, M.; Solari, L.; Tomás, R.; Raspini, F.; Ceccatelli, M.; Fernández-Merodo, J.A.; Casagli, N.; Herrera, G. Vulnerability Assessment of Buildings due to Land Subsidence Using InSAR Data in the Ancient Historical City of Pistoia (Italy). Sensors 2020, 20, 2749. https://doi.org/10.3390/s20102749
Ezquerro P, Del Soldato M, Solari L, Tomás R, Raspini F, Ceccatelli M, Fernández-Merodo JA, Casagli N, Herrera G. Vulnerability Assessment of Buildings due to Land Subsidence Using InSAR Data in the Ancient Historical City of Pistoia (Italy). Sensors. 2020; 20(10):2749. https://doi.org/10.3390/s20102749
Chicago/Turabian StyleEzquerro, Pablo, Matteo Del Soldato, Lorenzo Solari, Roberto Tomás, Federico Raspini, Mattia Ceccatelli, José Antonio Fernández-Merodo, Nicola Casagli, and Gerardo Herrera. 2020. "Vulnerability Assessment of Buildings due to Land Subsidence Using InSAR Data in the Ancient Historical City of Pistoia (Italy)" Sensors 20, no. 10: 2749. https://doi.org/10.3390/s20102749
APA StyleEzquerro, P., Del Soldato, M., Solari, L., Tomás, R., Raspini, F., Ceccatelli, M., Fernández-Merodo, J. A., Casagli, N., & Herrera, G. (2020). Vulnerability Assessment of Buildings due to Land Subsidence Using InSAR Data in the Ancient Historical City of Pistoia (Italy). Sensors, 20(10), 2749. https://doi.org/10.3390/s20102749