Heart Rate Variability and Accelerometry as Classification Tools for Monitoring Perceived Stress Levels—A Pilot Study on Firefighters
Abstract
:1. Introduction
2. Method
2.1. Participants
2.2. Procedure
2.3. Data Collection Instruments
2.3.1. Stress Assessment
2.3.2. Physiological Data Acquisition
2.4. Data Pre-Processing
2.5. Data Analysis
2.5.1. Data Time Series Partitioning
2.5.2. HRV Analysis
2.6. Statistical Analysis
3. Results
3.1. Self-Assessment of Perceived Stress
3.2. Physiological Recordings
3.3. Clusters of Acceleration Data
3.4. Classification of R-R Time Series Episodes
4. Discussion
4.1. Outcomes and Applications
4.2. Limitations & Outlook
5. Conclusions
Declarations
Ethics Approval and Consent to Participate
Consent for Publication
Availability of Supporting Data
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Cluster Analysis of Motion Data
References
- Mitani, S.; Fujita, M.; Nakata, K.; Shirakawa, T. Impact of post-traumatic stress disorder and job-related stress on burnout: A study of fire service workers. J. Emerg. Med. 2006, 31, 7–11. [Google Scholar]
- Beaton, R.; Murphy, S.; Johnson, C.; Pike, K.; Corneil, W. Exposure to duty-related incident stressors in urban firefighters and paramedics. J. Trauma. Stress 1998, 11, 821–828. [Google Scholar]
- Moran, C.C.; Colless, E. Perceptions of work stress in Australian firefighters. Work Stress 1995, 9, 405–415. [Google Scholar]
- Katsavouni, F.; Bebetsos, E.; Malliou, P.; Beneka, A. The relationship between burnout, PTSD symptoms and injuries in firefighters. Occup. Med. 2016, 66, 32–37. [Google Scholar] [CrossRef] [Green Version]
- Del Ben, K.S.; Scotti, J.R.; Chen, Y.C.; Fortson, B.L. Prevalence of posttraumatic stress disorder symptoms in firefighters. Work Stress 2006, 20, 37–48. [Google Scholar]
- Pinto, R.J.; Henriques, S.P.; Jongenelen, I.; Carvalho, C.; Maia, Â.C. The strongest correlates of PTSD for firefighters: Number, recency, frequency, or perceived threat of traumatic events? J. Trauma. Stress 2015, 28, 434–440. [Google Scholar]
- Corneil, W.; Beaton, R.; Murphy, S.; Johnson, C.; Pike, K. Exposure to traumatic incidents and prevalence of posttraumatic stress symptomatology in urban firefighters in two countries. J. Occup. Health Psychol. 1999, 4, 131. [Google Scholar]
- Chen, Y.S.; Chen, M.C.; Chou, F.H.C.; Sun, F.C.; Chen, P.C.; Tsai, K.Y.; Chao, S.S. The relationship between quality of life and posttraumatic stress disorder or major depression for firefighters in Kaohsiung, Taiwan. Qual. Life Res. 2007, 16, 1289–1297. [Google Scholar]
- Beaton, R.D.; Murphy, S.A. Sources of occupational stress among firefighter/EMTs and firefighter/paramedics and correlations with job-related outcomes. Prehospital Disaster Med. 1993, 8, 140–150. [Google Scholar]
- Åkerstedt, T. Psychological and psychophysiological effects of shift work. Scand. J. Work. Environ. Health 1990, 16, 67–73. [Google Scholar]
- Gordon, H.; Larivière, M. Physical and psychological determinants of injury in Ontario forest firefighters. Occup. Med. 2014, 64, 583–588. [Google Scholar]
- Paley, M.J.; Tepas, D.I. Fatigue and the shiftworker: Firefighters working on a rotating shift schedule. Hum. Factors 1994, 36, 269–284. [Google Scholar]
- Boffa, J.W.; Stanley, I.H.; Hom, M.A.; Norr, A.M.; Joiner, T.E.; Schmidt, N.B. PTSD symptoms and suicidal thoughts and behaviors among firefighters. J. Psychiatr. Res. 2017, 84, 277–283. [Google Scholar]
- Haslam, C.; Mallon, K. A preliminary investigation of post-traumatic stress symptoms among firefighters. Work Stress 2003, 17, 277–285. [Google Scholar] [CrossRef]
- Kales, S.N.; Soteriades, E.S.; Christoudias, S.G.; Christiani, D.C. Firefighters and on-duty deaths from coronary heart disease: A case control study. Environ. Health 2003, 2, 14. [Google Scholar]
- Soteriades, E.S.; Smith, D.L.; Tsismenakis, A.J.; Baur, D.M.; Kales, S.N. Cardiovascular disease in US firefighters: A systematic review. Cardiol. Rev. 2011, 19, 202–215. [Google Scholar]
- Gomes, P.; Kaiseler, M.; Lopes, B.; Faria, S.; Queiros, C.; Coimbra, M. Are standard heart rate variability measures associated with the self-perception of stress of firefighters in action? In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 2571–2574. [Google Scholar]
- Kunadharaju, K.; Smith, T.D.; DeJoy, D.M. Line-of-duty deaths among US firefighters: An analysis of fatality investigations. Accid. Anal. Prev. 2011, 43, 1171–1180. [Google Scholar]
- Al-Zaiti, S.S.; Carey, M.G. The prevalence of clinical and electrocardiographic risk factors of cardiovascular death among on-duty professional firefighters. J. Cardiovasc. Nurs. 2015, 30, 440. [Google Scholar]
- Pennington, M.L.; Carpenter, T.P.; Synett, S.J.; Torres, V.A.; Teague, J.; Morissette, S.B.; Knight, J.; Kamholz, B.W.; Keane, T.M.; Zimering, R.T.; et al. The influence of exposure to natural disasters on depression and PTSD symptoms among firefighters. Prehospital Disaster Med. 2018, 33, 102–108. [Google Scholar]
- Lee, D.J.; Fleming, L.E.; Gomez-Marín, O.; LeBlanc, W. Risk of hospitalization among firefighters: The national health interview survey, 1986–1994. Am. J. Public Health 2004, 94, 1938–1939. [Google Scholar]
- Regehr, C.; Hill, J.; Knott, T.; Sault, B. Social support, self-efficacy and trauma in new recruits and experienced firefighters. Stress Health 2003, 19, 189–193. [Google Scholar] [CrossRef]
- Stone, A.A.; Shiffman, S. Ecological momentary assessment (EMA) in behavorial medicine. Ann. Behav. Med. 1994, 16, 199–202. [Google Scholar]
- Baumeister, R.F.; Vohs, K.D.; Funder, D.C. Psychology as the science of self-reports and finger movements: Whatever happened to actual behavior? Perspect. Psychol. Sci. 2007, 2, 396–403. [Google Scholar]
- Wetherell, M.A.; Carter, K. The multitasking framework: The effects of increasing workload on acute psychobiological stress reactivity. Stress Health 2014, 30, 103–109. [Google Scholar]
- Hautala, A.J.; Karjalainen, J.; Kiviniemi, A.M.; Kinnunen, H.; Mäkikallio, T.H.; Huikuri, H.V.; Tulppo, M.P. Physical activity and heart rate variability measured simultaneously during waking hours. Am. J. Physiol. Heart Circ. Physiol. 2010, 298, H874–H880. [Google Scholar]
- Troiano, R.P.; Berrigan, D.; Dodd, K.W.; Masse, L.C.; Tilert, T.; McDowell, M. Physical activity in the United States measured by accelerometer. Med. Sci. Sport. Exerc. 2008, 40, 181. [Google Scholar]
- Carels, R.A.; Douglass, O.M.; Cacciapaglia, H.M.; O’brien, W.H. An ecological momentary assessment of relapse crises in dieting. J. Consult. Clin. Psychol. 2004, 72, 341. [Google Scholar]
- Bonato, P. Advances in wearable technology and applications in physical medicine and rehabilitation. J. NeuroEng. Rehabil. 2005, 2, 2. [Google Scholar]
- Bonnici, T.; Tarassenko, L.; Clifton, D.A.; Watkinson, P. The digital patient. Clin. Med. 2013, 13, 252–257. [Google Scholar]
- Monton, E.; Hernandez, J.F.; Blasco, J.M.; Hervé, T.; Micallef, J.; Grech, I.; Brincat, A.; Traver, V. Body area network for wireless patient monitoring. Commun. IET 2008, 2, 215–222. [Google Scholar]
- Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. NeuroEng. Rehabil. 2012, 9, 1. [Google Scholar]
- Yoon, S.; Sim, J.K.; Cho, Y.H. A Flexible and Wearable Human Stress Monitoring Patch. Sci. Rep. 2016, 6, 23468. [Google Scholar]
- Milosevic, M.; Jovanov, E.; Frith, K.H. Research Methodology for Real-Time Stress Assessment of Nurses. Comput. Inform. Nurs. 2013, 31, 615–621. [Google Scholar]
- Shaffer, F.; McCraty, R.; Zerr, C.L. A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Front. Psychol. 2014, 5, 1040. [Google Scholar]
- Taelman, J.; Vandeput, S.; Spaepen, A.; Van Huffel, S. Influence of mental stress on heart rate and heart rate variability. In Proceedings of the 4th European Conference of the International Federation for Medical and Biological Engineerin, Antwerp, Belgium, 23–27 November 2008; pp. 1366–1369. [Google Scholar]
- Achten, J.; Jeukendrup, A.E. Heart rate monitoring. Sport. Med. 2003, 33, 517–538. [Google Scholar]
- Henry, J.P. Psychological and physiological responses to stress: The right hemisphere and the hypothalamo-pituitary-adrenal axis, an inquiry into problems of human bonding. Integr. Physiol. Behav. Sci. 1993, 28, 369–387. [Google Scholar]
- Hallman, D.M.; Srinivasan, D.; Mathiassen, S.E. Short-and long-term reliability of heart rate variability indices during repetitive low-force work. Eur. J. Appl. Physiol. 2015, 115, 803–812. [Google Scholar]
- Seoane, F.; Mohino-Herranz, I.; Ferreira, J.; Alvarez, L.; Buendia, R.; Ayllón, D.; Llerena, C.; Gil-Pita, R. Wearable biomedical measurement systems for assessment of mental stress of combatants in real time. Sensors 2014, 14, 7120–7141. [Google Scholar]
- Togo, F.; Takahashi, M. Heart rate variability in occupational health-a systematic review. Ind. Health 2009, 47, 589–602. [Google Scholar]
- Carlstedt, R.A. Integrative evidence-based athlete assessment and intervention: A field-tested and validated protocol. J. Am. Board Sport Psychol. 2007, 1, 1–30. [Google Scholar]
- McDuff, D.; Gontarek, S.; Picard, R. Remote measurement of cognitive stress via heart rate variability. In Proceedings of the 2014 36th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), Chicago, IL, USA, 26–30 August 2014; pp. 2957–2960. [Google Scholar]
- Sharpley, C.F.; Kamen, P.; Galatsis, M.; Heppel, R.; Veivers, C.; Claus, K. An examination of the relationship between resting heart rate variability and heart rate reactivity to a mental arithmetic stressor. Appl. Psychophysiol. Biofeedback 2000, 25, 143–153. [Google Scholar]
- Dishman, R.K.; Nakamura, Y.; Garcia, M.E.; Thompson, R.W.; Dunn, A.L.; Blair, S.N. Heart rate variability, trait anxiety, and perceived stress among physically fit men and women. Int. J. Psychophysiol. 2000, 37, 121–133. [Google Scholar]
- Kemp, A.H.; Quintana, D.S.; Felmingham, K.L.; Matthews, S.; Jelinek, H.F. Depression, comorbid anxiety disorders, and heart rate variability in physically healthy, unmedicated patients: Implications for cardiovascular risk. PLoS ONE 2012, 7, e30777. [Google Scholar]
- Miu, A.C.; Heilman, R.M.; Miclea, M. Reduced heart rate variability and vagal tone in anxiety: Trait versus state, and the effects of autogenic training. Auton. Neurosci. 2009, 145, 99–103. [Google Scholar]
- Wu, M.; Cao, H.; Nguyen, H.L.; Surmacz, K.; Hargrove, C. Modeling perceived stress via HRV and accelerometer sensor streams. In Proceedings of the 2015 37th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 1625–1628. [Google Scholar]
- Sarmiento, S.; García-Manso, J.M.; Martín-González, J.M.; Vaamonde, D.; Calderón, J.; Silva-Grigoletto, M.E.D. Heart rate variability during high-intensity exercise. J. Syst. Sci. Complex. 2013, 26, 104–116. [Google Scholar] [CrossRef]
- Melanson, E.L. Resting heart rate variability in men varying in habitual physical activity. Med. Sci. Sport. Exerc. 2000, 32, 1894–1901. [Google Scholar]
- Garcia-Ceja, E.; Osmani, V.; Mayora, O. Automatic stress detection in working environments from smartphones’ accelerometer data: A first step. IEEE J. Biomed. Health Inform. 2015, 20, 1053–1060. [Google Scholar]
- Mathie, M.J.; Coster, A.C.; Lovell, N.H.; Celler, B.G. Accelerometry: Providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiol. Meas. 2004, 25, R1. [Google Scholar]
- Karantonis, D.M.; Narayanan, M.R.; Mathie, M.; Lovell, N.H.; Celler, B.G. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans. Inf. Technol. Biomed. 2006, 10, 156–167. [Google Scholar]
- Mannini, A.; Sabatini, A.M. Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors 2010, 10, 1154–1175. [Google Scholar]
- Rodrigues, S.; Paiva, J.S.; Dias, D.; Pimentel, G.; Kaiseler, M.; Cunha, J.P.S. Wearable Biomonitoring Platform for the Assessment of Stress and its Impact on Cognitive Performance of Firefighters: An Experimental Study. Clin. Pract. Epidemiol. Ment. Heal. CP EMH 2018, 14, 250. [Google Scholar]
- Rodrigues, S.; Dias, D.; Paiva, J.S.; Cunha, J.P. Psychophysiological Stress Assessment Among On-Duty Firefighters. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 4335–4338. [Google Scholar]
- Rodrigues, S.; Paiva, J.S.; Dias, D.; Cunha, J.P.S. Stress among on-duty firefighters: An ambulatory assessment study. PeerJ. 2018, 6, e5967. [Google Scholar]
- Pluntke, U.; Gerke, S.; Sridhar, A.; Weiss, J.; Michel, B. Evaluation and classification of Physical and Psychological Stress in Firefighters using Heart Rate Variability. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 2207–2212. [Google Scholar]
- Savage, R.J.; Lord, C.; Larsen, B.L.; Knight, T.L.; Langridge, P.D.; Aisbett, B. Firefighter feedback during active cooling: A useful tool for heat stress management? J. Therm. Biol. 2014, 46, 65–71. [Google Scholar] [CrossRef]
- Tharion, W.J.; Buller, M.J.; Clements, C.M.; Dominguez, D.; Sampsonis, C.; Mullen, S.P.; Karis, A.J.; Potter, A.W. Human Factors Evaluation of the Hidalgo Equivital EQ-02 Physiological Status Monitoring System; Technical Report; DTIC Document; Army Research Institute of Environmental Medicine: Natick, MA, USA, 2013. [Google Scholar]
- Thakor, N.V.; Zhu, Y.S. Applications of adaptive filtering to ECG analysis: Noise cancellation and arrhythmia detection. Biomed. Eng. IEEE Trans. 1991, 38, 785–794. [Google Scholar]
- Bao, L.; Intille, S. Activity recognition from user-annotated acceleration data. In Pervasive Computing; Springer: Berlin/Heidelberg, Germany, 2004; pp. 1–17. [Google Scholar]
- Meina, M.; Celmer, B.; Rykaczewski, K. Towards Robust Framework for On-line Human Activity Reporting Using Accelerometer Readings. In Active Media Technology; Ślezak, D., Schaefer, G., Vuong, S.T., Kim, Y.S., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2014; Volume 8610, pp. 347–358. [Google Scholar]
- Berntson, G.G.; Thomas Bigger, J.; Eckberg, D.L.; Grossman, P.; Kaufmann, P.G.; Malik, M.; Nagaraja, H.N.; Porges, S.W.; Saul, J.P.; Stone, P.H.; et al. Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology 1997, 34, 623–648. [Google Scholar]
- Sassi, R.; Cerutti, S.; Lombardi, F.; Malik, M.; Huikuri, H.V.; Peng, C.K.; Schmidt, G.; Yamamoto, Y.; Reviewers:, D.; Gorenek, B.; et al. Advances in heart rate variability signal analysis: Joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. EP Eur. 2015, 17, 1341–1353. [Google Scholar]
- Young, H.; Benton, D. We should be using nonlinear indices when relating heart-rate dynamics to cognition and mood. Sci. Rep. 2015, 5, 1–16. [Google Scholar]
- Sztajzel, J. Heart rate variability: A noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med. Wkly. 2004, 134, 514–522. [Google Scholar]
- Electrophysiology, Task Force of the European Society of Cardiology the North American Society of Pacing. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar]
- Pereira, T.; Almeida, P.R.; Cunha, J.P.; Aguiar, A. Heart rate variability metrics for fine-grained stress level assessment. Comput. Methods Programs Biomed. 2017, 148, 71–80. [Google Scholar]
- Lazarus, R.S.; Folkman, S. Stress, Appraisal, and Coping; Springer Publishing Company: New York, NY, USA, 1984. [Google Scholar]
- Gist, R.; Taylor, V.H.; Raak, S. Suicide Surveillance, Prevention, and Intervention Measures for the US Fire Service: Findings and Recommendations for the Suicide and Depression Summit; National Fallen Firefighters Foundation: Baltimore, MD, USA, 2011. [Google Scholar]
- Wilmoth, J. Trouble in mind. Special report: Firefighter behavioral health. NFPA J. 2014. [Google Scholar]
- Brown, C. Are We Becoming More Socially Awkward? An Analysis of the Relationship Between Technological Communication Use and Social Skills in College Students. Psychology Honors Papers; Connecticut College: New London, CT, USA, 2013. [Google Scholar]
- Krasuski, A.; Jankowski, A.; Skowron, A.; Slezak, D. From sensory data to decision making: A perspective on supporting a fire commander. In Proceedings of the 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), Atlanta, GA, USA, 17–20 November 2013; pp. 229–236. [Google Scholar]
- Krasuski, A. A framework for Dynamic Analytical Risk Management at the emergency scene. From tribal to top down in the risk management maturity model. In Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS), Warsaw, Poland, 7–10 September 2014; pp. 323–330. [Google Scholar]
- Bundesamt fur Bevolkerungsschutz und Katastrophenhilfe, FwDv100. Fuhrung und Leitung im Einsatz: Fuhrungssystem; Boorberg-Verlag: Berlin, Germany, 1999. [Google Scholar]
- Graeger, A.; Cimolino, U.; de Vries, H.; Sümersen, J. Einsatz-und Abschnittsleitung: Das Einsatz- Führungs-System (EFS); Ecomed Sicherheit: Landsberg, Germany, 2009. [Google Scholar]
- Department of Communities and Local Goverment. Fire Service Operations, Incident Command, 3rd ed.; Fire Service Manual: London, UK, 2008. [Google Scholar]
- Meina, M.; Janusz, A.; Rykaczewski, K.; Slezak, D.; Celmer, B.; Krasuski, A. Tagging firefighter activities at the emergency scene: Summary of AAIA’15 data mining competition at Knowledge Pit. In Proceedings of the Computer Science and Information Systems (FedCSIS), 2015 Federated Conference on IEEE, Lodz, Poland, 13–16 September 2015; pp. 367–373. [Google Scholar]
- Hill, L.K.; Hu, D.D.; Koenig, J.; Sollers, J.J., III; Kapuku, G.; Wang, X.; Snieder, H.; Thayer, J.F. Ethnic differences in resting heart rate variability: A systematic review and meta-analysis. Psychosom. Med. 2015, 77, 16. [Google Scholar]
- Liao, D.; Barnes, R.W.; Chambless, L.E.; Simpson, R.J.; Sorlie, P.; Heiss, G.; Aric Investigators. Age, race, and sex differences in autonomic cardiac function measured by spectral analysis of heart rate variability—The ARIC study. Am. J. Cardiol. 1995, 76, 906–912. [Google Scholar]
- Gutin, B.; Howe, C.; Johnson, M.H.; Humphries, M.C.; Snieder, H.; Barbeau, P. Heart rate variability in adolescents: Relations to physical activity, fitness, and adiposity. Med. Sci. Sport. Exerc. 2005, 37, 1856–1863. [Google Scholar]
- Koenig, J.; Thayer, J.F. Sex differences in healthy human heart rate variability: A meta-analysis. Neurosci. Biobehav. Rev. 2016, 64, 288–310. [Google Scholar]
- Kappus, R.M.; Ranadive, S.M.; Yan, H.; Lane-Cordova, A.D.; Cook, M.D.; Sun, P.; Harvey, I.S.; Wilund, K.R.; Woods, J.A.; Fernhall, B. Sex differences in autonomic function following maximal exercise. Biol. Sex Differ. 2015, 6, 28. [Google Scholar]
- Mendonca, G.V.; Heffernan, K.S.; Rossow, L.; Guerra, M.; Pereira, F.D.; Fernhall, B. Sex differences in linear and nonlinear heart rate variability during early recovery from supramaximal exercise. Appl. Physiol. Nutr. Metab. 2010, 35, 439–446. [Google Scholar]
- Woo, J.M.; Kim, T.S. Gender plays significant role in short-term heart rate variability. Appl. Psychophysiol. Biofeedback 2015, 40, 297–303. [Google Scholar]
- Sato, N.; Miyake, S. Cardiovascular reactivity to mental stress: Relationship with menstrual cycle and gender. J. Physiol. Anthropol. Appl. Hum. Sci. 2004, 23, 215–223. [Google Scholar]
- Lee, J.H.; Lee, D.; Kim, J.; Jeon, K.; Sim, M. Duty-Related Trauma Exposure and Posttraumatic Stress Symptoms in Professional Firefighters. J. Trauma. Stress 2017, 30, 133–141. [Google Scholar]
- Bryant, R.A.; Harvey, A.G. Posttraumatic stress in volunteer firefighters: Predictors of distress. J. Nerv. Ment. Dis. 1995, 183, 267–271. [Google Scholar]
- Walker, A.; McKune, A.; Ferguson, S.; Pyne, D.B.; Rattray, B. Chronic occupational exposures can influence the rate of PTSD and depressive disorders in first responders and military personnel. Extrem. Physiol. Med. 2016, 5, 8. [Google Scholar]
- Liao, T.W. Clustering of time series data—A survey. Pattern Recognit. 2005, 38, 1857–1874. [Google Scholar] [CrossRef]
- Altun, K.; Barshan, B.; Tunçel, O. Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognit. 2010, 43, 3605–3620. [Google Scholar]
- Atallah, L.; Lo, B.; King, R.; Yang, G.Z. Sensor positioning for activity recognition using wearable accelerometers. IEEE Trans. Biomed. Circuits Syst. 2011, 5, 320–329. [Google Scholar]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics; University of California Press: Berkeley, CA, USA, 1967; pp. 281–297. [Google Scholar]
- Sculley, D. Web-scale K-means Clustering. In Proceedings of the 19th International Conference on World Wide Web, Raleigh, NC, USA, 26–30 April 2010; pp. 1177–1178. [Google Scholar] [CrossRef]
- Banos, O.; Galvez, J.M.; Damas, M.; Pomares, H.; Rojas, I. Window Size Impact in Human Activity Recognition. Sensors 2014, 14, 6474–6499. [Google Scholar] [CrossRef] [Green Version]
HRV Index | Description |
---|---|
SDNN | Standard deviation (SD) of the NN (R-R) inter-beat intervals |
SDANN | Standard deviation of averaged over 5-minute periods NN (R-R) intervals |
SDNNIDX | Mean value index (IDX) of SDNN |
pNN50 | Proportion of the adjacent (successive) NN (R-R) intervals greater than 50 ms |
SDSD | Standard deviation of the successive differences between the adjacent NN (RR) intervals |
rMSSD | Root mean square differences between the successive NN (R-R) intervals |
IRRR | Length of the interval between the first and the third quantile of the ΔRR time series |
MADRR | Median of the absolute values of the successive differences between the adjacent NN (R-R) intervals |
TINN | Triangular interpolation of the NN (R-R) interval histogram. |
HRVi | Index reflecting the slowing down of the heart |
SD1 | Dispersion of the points along the minor axis of the Pointcare plot (SD of the short-term R-R interval variability) |
SD2 | Dispersion of the points along the major axis of the Pointcare plot (SD of the long-term R-R interval variability) |
, ScalExp | Correlation dimension and scaling exponent alpha, non-linear dynamics measures of time series. |
No. | Question a | Mean | SD |
---|---|---|---|
1. | To what degree was the situation stressful to you? | 1.91 | 0.75 |
2. | To what degree was the situation not a challenge to you? | 3.56 | 1.03 |
3. | To what degree was the action routine? | 3.60 | 1.20 |
4. | To what degree was the situation a threat to your life? | 1.47 | 0.74 |
5. | Did the situation endanger civilians in your surroundings? | 1.84 | 1.15 |
6. | To what degree did the situation endanger other firefighters involved in the action? | 1.44 | 0.73 |
7. | To what degree was the situation not a threat? | 3.77 | 1.25 |
8. | Assess the amount of effort you had to undertake in this situation | 2.16 | 0.92 |
9. | Was your involvement crucial to the action? | 2.81 | 1.16 |
10. | Assess how satisfied you are with your actions during the incident | 3.77 | 0.81 |
11. | Assess how satisfied you are with your co-operation with other participants throughout the action | 4.12 | 0.66 |
12. | In a few short sentences, characterise the situation and your feelings about it (state the type of action, equipment used, difficulties encountered in action, victims/injured parties [people, animals and possessions], and any information that seems important to you) b | ||
Total score | 22.81 | 5.36 |
ClusterID (No. of Incident/Non-Incident Episodes) | ||||
---|---|---|---|---|
1 (25/166) | 2 (3/48) | 6 (11/151) | 8 (5/126) | |
SDNN (ms) | p = 0.312 | p = 0.608 | p = 0.203 | p = 0.271 |
incident | 117.92 ± 41.52 | 83.47 ± 35.30 | 112.12 ± 50.22 | 98.96 ± 27.27 |
non-incident | 128.61 ± 65.50 | 107.45 ± 48.97 | 134.62 ± 64.33 | 27.27 ± 56.94 |
SDNNIDX (ms) | p = 0.166 | p = 0.522 | p = 0.050 * | p = 0.083 |
incident | 93.52 ± 46.06 | 74.73 ± 43.20 | 99.24 ± 50.84 | 76.68 ± 19.02 |
non-incident | 104.52 ± 59.65 | 95.65 ± 47.51 | 110.80 ± 60.70 | 19.02 ± 54.30 |
pNN50 (%) | p = 0.225 | p = 0.735 | p = 0.084 | p = 0.018 * |
incident | 18.61 ± 13.89 | 11.88 ± 11.45 | 15.92 ± 14.29 | 13.99 ± 9.53 |
non-incident | 23.30 ± 16.05 | 22.21 ± 14.17 | 26.36 ± 16.81 | 9.53 ± 16.58 |
SDSD (ms) | p = 0.225 | p = 0.735 | p = 0.084 | p = 0.018 * |
incident | 65.00 ± 44.10 | 61.43 ± 47.03 | 60.93 ± 47.39 | 44.16 ± 16.89 |
non-incident | 78.71 ± 58.71 | 81.26 ± 47.61 | 92.33 ± 61.78 | 16.89 ± 48.14 |
rMSSD (ms) | p = 0.308 | p = 0.471 | p = 0.447 | p = 0.106 |
incident | 64.98 ± 44.08 | 61.41 ± 47.01 | 60.92 ± 47.37 | 44.15 ± 16.88 |
non-incident | 78.65 ± 58.54 | 81.17 ± 47.55 | 92.22 ± 61.52 | 16.88 ± 48.12 |
IRRR (ms) | p = 0.173 | p = 0.607 | p = 0.020 * | p = 0.069 |
incident | 151.52 ± 63.06 | 80.00 ± 37.00 | 154.00 ± 97.90 | 115.00 ± 18.11 |
non-incident | 168.31 ± 110.14 | 120.23 ± 74.10 | 177.93 ± 117.43 | 18.11 ± 85.11 |
MADRR (ms) | p = 0.991 | p = 0.793 | p = 0.922 | p = 0.882 |
incident | 20.64 ± 12.09 | 14.00 ± 10.00 | 16.27 ± 11.28 | 18.00 ± 8.17 |
non-incident | 25.16 ± 17.99 | 20.84 ± 12.91 | 26.52 ± 16.03 | 8.17 ± 18.49 |
TINN (ms) | p = 0.991 | p = 0.793 | p = 0.922 | p = 0.882 |
incident | 335.49 ± 98.45 | 214.78 ± 102.79 | 315.20 ± 80.28 | 311.77 ± 23.04 |
non-incident | 333.28 ± 136.37 | 243.49 ± 105.54 | 306.71 ± 105.84 | 23.04 ± 144.73 |
HRVi | p = 0.225 | p = 0.735 | p = 0.084 | p = 0.018 * |
incident | 21.47 ± 6.30 | 13.75 ± 6.58 | 20.17 ± 5.14 | 19.95 ± 1.47 |
non-incident | 21.33 ± 8.73 | 15.58 ± 6.75 | 19.63 ± 6.77 | 1.47 ± 9.26 |
SD1 (ms) | p = 0.331 | p = 0.576 | p = 0.246 | p = 0.367 |
incident | 45.96 ± 31.18 | 43.43 ± 33.25 | 43.09 ± 33.51 | 31.23 ± 11.94 |
non-incident | 55.65 ± 41.51 | 57.46 ± 33.66 | 65.29 ± 43.68 | 11.94 ± 34.04 |
SD2 (ms) | p = 0.008 ** | p = 0.648 | p = 0.121 | p = 0.021 * |
incident | 159.42 ± 52.28 | 108.34 ± 41.15 | 151.51 ± 65.12 | 136.26 ± 37.24 |
non-incident | 172.22 ± 84.50 | 139.49 ± 62.37 | 177.44 ± 82.81 | 37.24 ± 74.53 |
p = 0.010 ** | p = 0.400 | p = 0.095 | p = 0.296 | |
incident | 1.44 ± 0.06 | 1.25 ± 0.13 | 1.43 ± 0.04 | 1.46 ± 0.02 |
non-incident | 1.35 ± 0.33 | 1.28 ± 0.35 | 1.39 ± 0.21 | 0.02 ± 0.15 |
ScalExp | p = 0.157 | p = 0.767 | p = 0.053 | p = 0.015 * |
incident | 1.01 ± 0.11 | 1.19 ± 0.22 | 1.07 ± 0.20 | 1.05 ± 0.19 |
non-incident | 0.91 ± 0.21 | 0.86 ± 0.29 | 0.92 ± 0.25 | 0.19 ± 0.23 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meina, M.; Ratajczak, E.; Sadowska, M.; Rykaczewski, K.; Dreszer, J.; Bałaj, B.; Biedugnis, S.; Węgrzyński, W.; Krasuski, A. Heart Rate Variability and Accelerometry as Classification Tools for Monitoring Perceived Stress Levels—A Pilot Study on Firefighters. Sensors 2020, 20, 2834. https://doi.org/10.3390/s20102834
Meina M, Ratajczak E, Sadowska M, Rykaczewski K, Dreszer J, Bałaj B, Biedugnis S, Węgrzyński W, Krasuski A. Heart Rate Variability and Accelerometry as Classification Tools for Monitoring Perceived Stress Levels—A Pilot Study on Firefighters. Sensors. 2020; 20(10):2834. https://doi.org/10.3390/s20102834
Chicago/Turabian StyleMeina, Michał, Ewa Ratajczak, Maria Sadowska, Krzysztof Rykaczewski, Joanna Dreszer, Bibianna Bałaj, Stanisław Biedugnis, Wojciech Węgrzyński, and Adam Krasuski. 2020. "Heart Rate Variability and Accelerometry as Classification Tools for Monitoring Perceived Stress Levels—A Pilot Study on Firefighters" Sensors 20, no. 10: 2834. https://doi.org/10.3390/s20102834
APA StyleMeina, M., Ratajczak, E., Sadowska, M., Rykaczewski, K., Dreszer, J., Bałaj, B., Biedugnis, S., Węgrzyński, W., & Krasuski, A. (2020). Heart Rate Variability and Accelerometry as Classification Tools for Monitoring Perceived Stress Levels—A Pilot Study on Firefighters. Sensors, 20(10), 2834. https://doi.org/10.3390/s20102834