Stability Analysis of the Fluorescent Tracer 1-Methylnaphthalene for IC Engine Applications by Supercontinuum Laser Absorption Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schulz, C.; Sick, V. Tracer-LIF diagnostics: Quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems. Prog. Energy Combust. Sci. 2005, 31, 75–121. [Google Scholar] [CrossRef]
- Peterson, B.; Baum, E.; Böhm, B.; Sick, V.; Dreizler, A. High-speed PIV and LIF imaging of temperature stratification in an internal combustion engine. Proc. Combust. Inst. 2013, 34, 3653–3660. [Google Scholar] [CrossRef]
- Itani, L.M.; Bruneaux, G.; Di Lella, A.; Schulz, C. Two-tracer LIF imaging of preferential evaporation of multi-component gasoline fuel sprays under engine conditions. Proc. Combust. Inst. 2015, 35, 2915–2922. [Google Scholar] [CrossRef]
- Lind, S.; Retzer, U.; Will, S.; Zigan, L. Investigation of mixture formation in a diesel spray by tracer-based laser-induced fluorescence using 1-methylnaphthalene. Proc. Combust. Inst. 2017, 36, 4497–4504. [Google Scholar] [CrossRef]
- Koegl, M.; Hofbeck, B.; Baderschneider, K.; Mishra, Y.N.; Huber, F.J.T.; Berrocal, E.; Will, S.; Zigan, L. Analysis of LIF and Mie signals from single micrometric droplets for instantaneous droplet sizing in sprays. Opt. Express 2018, 26, 31750–31766. [Google Scholar] [CrossRef]
- Koegl, M.; Mull, C.; Baderschneider, K.; Wislicenus, J.; Will, S.; Zigan, L. Characterization of Nile Red as a Tracer for Laser-Induced Fluorescence Spectroscopy of Gasoline and Kerosene and Their Mixture with Biofuels. Sensors 2019, 19, 2822. [Google Scholar] [CrossRef] [Green Version]
- Zabeti, S.; Aghsaee, M.; Fikri, M.; Welz, O.; Schulz, C. Optical properties and pyrolysis of shock-heated gas-phase anisole. Proc. Combust. Inst. 2017, 36, 4525–4532. [Google Scholar] [CrossRef]
- Trost, J.; Zigan, L.; Eichmann, S.C.; Seeger, T.; Leipertz, A. Investigation of the chemical stability of the laser-induced fluorescence tracers acetone, diethylketone, and toluene under IC engine conditions using Raman spectroscopy. Appl. Opt. 2013, 52, 6300–6308. [Google Scholar] [CrossRef]
- Capelin, B.C.; Ingram, G.; Kokolis, J. The pyrolytic identification of organic molecules: II. A quantitative evaluation. Microchem. J. 1974, 19, 229–252. [Google Scholar] [CrossRef]
- Faust, S. Characterisation of Organic Fuel Tracers for Laser-Based Quantitative Diagnostics of Fuel Concentration, Temperature, and Equivalence Ratio in Practical Combustion Processes. Ph.D. Thesis, Universität Duisburg-Essen, Duisburg, Germany, 2013. [Google Scholar]
- Eichmann, S.C.; Trost, J.; Seeger, T.; Zigan, L.; Leipertz, A. Application of linear Raman spectroscopy for the determination of acetone decomposition. Opt. Express 2011, 19, 11052–11058. [Google Scholar] [CrossRef] [Green Version]
- Sommerer, J.; Fikri, M.; Herzler, J.; Maas, U.; Schießl, R.; Schulz, C. The influence of selected aromatic fluorescence tracers on the combustion kinetics of iso-octane. Fuel 2019, 244, 559–568. [Google Scholar] [CrossRef]
- Retzer, U.; Fink, W.; Will, T.; Will, S.; Zigan, L. Fluorescence characteristics of the fuel tracer 1-methylnaphthalene for the investigation of equivalence ratio and temperature in an oxygen-containing environment. Appl. Phys. B 2019, 125, doi. [Google Scholar] [CrossRef]
- Retzer, U.; Ulrich, H.; Bauer, F.J.; Will, S.; Zigan, L. UV absorption cross sections of vaporized 1-methylnaphthalene at elevated temperatures. Appl. Phys. B 2020, 126, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Glassman, I.; Yetter, R.A. Combustion; Academic Press: Burlington, MA, USA, 2008. [Google Scholar]
- Fiddler, M.N.; Begashaw, I.; Mickens, M.A.; Collingwood, M.S.; Assefa, Z.; Bililign, S. Laser Spectroscopy for Atmospheric and Environmental Sensing. Sensors 2009, 9, 10447–10512. [Google Scholar] [CrossRef]
- Wojtas, J. Application of Cavity Enhanced Absorption Spectroscopy to the Detection of Nitric Oxide, Carbonyl Sulphide, and Ethane—Breath Biomarkers of Serious Diseases. Sensors 2015, 15, 14356–14369. [Google Scholar] [CrossRef] [Green Version]
- Goldenstein, C.S.; Spearrin, R.M.; Jeffries, J.B.; Hanson, R.K. Infrared laser-absorption sensing for combustion gases. Prog. Energy Combust. Sci. 2017, 60, 132–176. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Fu, P.; Chao, X. Laser Absorption Sensing Systems: Challenges, Modeling, and Design Optimization. Appl. Sci. 2019, 9, 2723. [Google Scholar] [CrossRef] [Green Version]
- Rieker, G.B.; Liu, X.; Li, H.; Jeffries, J.B.; Hanson, R.K. Measurements of near-IR water vapor absorption at high pressure and temperature. Appl. Phys. B 2007, 87, 169–178. [Google Scholar] [CrossRef]
- Blume, N.G.; Wagner, S. Broadband supercontinuum laser absorption spectrometer for multiparameter gas phase combustion diagnostics. Opt. Lett. 2015, 40, 3141–3144. [Google Scholar] [CrossRef] [PubMed]
- Werblinski, T.; Fendt, P.; Zigan, L.; Will, S. High-speed combustion diagnostics in a rapid compression machine by broadband supercontinuum absorption spectroscopy. Appl. Opt. 2017, 56, 4443–4453. [Google Scholar] [CrossRef] [PubMed]
- Nasir, E.F.; Farooq, A. Intra-pulse H2O absorption diagnostic for temperature sensing in a rapid compression machine. Appl. Phys. B 2019, 125, 210. [Google Scholar] [CrossRef]
- Werblinski, T.; Kleindienst, S.; Engelbrecht, R.; Zigan, L.; Will, S. Supercontinuum based absorption spectrometer for cycle-resolved multiparameter measurements in a rapid compression machine. Appl. Opt. 2016, 55, 4564–4574. [Google Scholar] [CrossRef] [PubMed]
- Fendt, P.; Werblinski, T.; Zigan, L.; Will, S. Influence of different spectroscopic line lists on the multiparameter determination by supercontinuum absorption spectroscopy at IC engine relevant conditions. In Proceedings of the European Combustion Meeting, Dubrovnik, Croatia, 18–21 April 2017. [Google Scholar]
- Rothman, L.S.; Gordon, I.E.; Barber, R.J.; Dothe, H.; Gamache, R.R.; Goldman, A.; Perevalov, V.I.; Tashkun, S.A.; Tennyson, J. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 2139–2150. [Google Scholar] [CrossRef]
- Kranendonk, L.A.; Caswell, A.W.; Sanders, S.T. Robust method for calculating temperature, pressure, and absorber mole fraction from broadband spectra. Appl. Opt. 2007, 46, 4117–4124. [Google Scholar] [CrossRef] [PubMed]
- Hagen, C.L.; Schmidt, J.R.; Sanders, S.T. Spectroscopic Sensing Via Dual-CladOptical Fiber. IEEE Sens. J. 2006, 6, 1227–1231. [Google Scholar] [CrossRef]
- LoCurto, A.C.; Zhu, K.; Sippel, T.R.; Michael, J.B. Characterization of Time-Domain Supercontinuum Absorption Spectroscopy for Water Vapor in the NIR for Combustion Applications; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2019. [Google Scholar]
- Chao, X.; Jeffries, J.B.; Hanson, R.K. Development of laser absorption techniques for real-time, in-situ dual-species monitoring (NO/NH3, CO/O2) in combustion exhaust. Proc. Combust. Inst. 2013, 34, 3583–3592. [Google Scholar] [CrossRef]
- Bürkle, S.; Biondo, L.; Ding, C.-P.; Honza, R.; Ebert, V.; Böhm, B.; Wagner, S. In-Cylinder Temperature Measurements in a Motored IC Engine using TDLAS. Flow Turbul. Combust. 2018, 101, 139–159. [Google Scholar] [CrossRef]
- Zigan, L.; Trost, J.; Leipertz, A. Simultaneous imaging of fuel vapor mass fraction and gas-phase temperature inside gasoline sprays using two-line excitation tracer planar laser-induced fluorescence. Appl. Opt. 2016, 55, 1453–1460. [Google Scholar] [CrossRef]
- Trost, J. Untersuchung der Gemischbildung Direkteinspritzender Verbrennungsmotoren Mittels Planarer Laserinduzierter Fluoreszenz an Tracern (Tracer-PLIF). Ph.D. Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, 2014. [Google Scholar]
- Emmert, J.; Grauer, S.J.; Wagner, S.; Daun, K.J. Efficient Bayesian inference of absorbance spectra from transmitted intensity spectra. Opt. Express 2019, 27, 26893–26909. [Google Scholar] [CrossRef]
- Cole, R.K.; Makowiecki, A.S.; Hoghooghi, N.; Rieker, G.B. Baseline-free quantitative absorption spectroscopy based on cepstral analysis. Opt. Express 2019, 27, 37920–37939. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Jeffries, J.B.; Hanson, R.K. Measurement of Non-Uniform Temperature Distributions Using Line-of-Sight Absorption Spectroscopy. AIAA J. 2007, 45, 411–419. [Google Scholar] [CrossRef]
- Liger, V.V.; Mironenko, V.R.; Kuritsyn, Y.A.; Bolshov, M.A. Determination of the Maximum Temperature in a Non-Uniform Hot Zone by Line-of-Site Absorption Spectroscopy with a Single Diode Laser. Sensors 2018, 18, 1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lind, S.; Trost, J.; Zigan, L.; Leipertz, A.; Will, S. Application of the tracer combination TEA/acetone for multi-parameter laser-induced fluorescence measurements in IC engines with exhaust gas recirculation. Proc. Combust. Inst. 2015, 35, 783–791. [Google Scholar] [CrossRef]
Parameter | Unit | Substance/Operating Points | ||
---|---|---|---|---|
1-MN | Isooctane | Mixture | ||
XN2/XO2 | 85 | 75 | 75 | |
XO2/Xfuel/tracer | 13.5 | 12.5 | 12.5 | |
XH2O,max | % | 0.43 | 0.95 | 0.94 |
1 MPa, 900 K | 1.5 MPa, 850 K | |||
τres | ms | 150, 210, 315 | 235, 330, 500 | |
τres (AFR) | ms | 210 | 330 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fendt, P.; Retzer, U.; Ulrich, H.; Will, S.; Zigan, L. Stability Analysis of the Fluorescent Tracer 1-Methylnaphthalene for IC Engine Applications by Supercontinuum Laser Absorption Spectroscopy. Sensors 2020, 20, 2871. https://doi.org/10.3390/s20102871
Fendt P, Retzer U, Ulrich H, Will S, Zigan L. Stability Analysis of the Fluorescent Tracer 1-Methylnaphthalene for IC Engine Applications by Supercontinuum Laser Absorption Spectroscopy. Sensors. 2020; 20(10):2871. https://doi.org/10.3390/s20102871
Chicago/Turabian StyleFendt, Peter, Ulrich Retzer, Hannah Ulrich, Stefan Will, and Lars Zigan. 2020. "Stability Analysis of the Fluorescent Tracer 1-Methylnaphthalene for IC Engine Applications by Supercontinuum Laser Absorption Spectroscopy" Sensors 20, no. 10: 2871. https://doi.org/10.3390/s20102871
APA StyleFendt, P., Retzer, U., Ulrich, H., Will, S., & Zigan, L. (2020). Stability Analysis of the Fluorescent Tracer 1-Methylnaphthalene for IC Engine Applications by Supercontinuum Laser Absorption Spectroscopy. Sensors, 20(10), 2871. https://doi.org/10.3390/s20102871