Optimal Central Frequency for Non-Contact Vital Sign Detection Using Monocycle UWB Radar
Abstract
:1. Introduction
2. Background
2.1. Transmitted Signal Model
2.2. Received Signal Model
2.3. Detection Block Diagram
3. Spectral Coefficient Solution
3.1. Respiratory Model
3.2. Heartbeat Model
3.3. Avoiding the Central Frequency for the Peak R3 harmonic and the Null Point H1
3.4. Vital Sign Spectrum Model of Monocycle UWB
4. Analysis of Optimal Central Frequency
4.1. Detected Respiratory Strength
4.2. Detected Heartbeat Strength
4.2.1. Comparison of Heartbeat Strength with R3 Harmonic
4.2.2. Comparison of Heartbeat Strength with Intermodulation
4.3. Discussion on the Optimal Central Frequency
4.4. Comparison between UWB and CW Radars
5. Experimentation for Optimal Central Frequency of Respiration
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ren, L.; Kong, L.; Foroughian, F.; Wang, H.; Theilmann, P.; Fathy, A.E. Comparison Study of Noncontact Vital Signs Detection Using a Doppler Stepped-Frequency Continuous-Wave Radar and Camera-Based Imaging Photoplethysmography. IEEE Trans. Microw. Theory Tech. 2017, 65, 3519–3529. [Google Scholar] [CrossRef]
- Muñoz-Ferreras, J.; Peng, Z.; Gómez-García, R.; Li, C. Review on Advanced Short-Range Multimode Continuous-Wave Radar Architectures for Healthcare Applications. IEEE J. Electromagn. RF Microw. Med. Biol. 2017, 1, 14–25. [Google Scholar] [CrossRef]
- Nahar, S.; Phan, T.; Quaiyum, F.; Ren, L.; Fathy, A.E.; Kilic, O. An Electromagnetic Model of Human Vital Signs Detection and Its Experimental Validation. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 8, 338–349. [Google Scholar] [CrossRef]
- Lin, F.; Zhuang, Y.; Song, C.; Wang, A.; Li, Y.; Gu, C.; Li, C.; Xu, W. SleepSense: A Noncontact and Cost-Effective Sleep Monitoring System. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Lubecke, V.M.; Boric-Lubecke, O.; Lin, J. A Review on Recent Advances in Doppler Radar Sensors for Noncontact Healthcare Monitoring. IEEE Trans. Microw. Theory Tech. 2013, 61, 2046–2060. [Google Scholar] [CrossRef]
- Zhao, H.; Hong, H.; Miao, D.; Li, Y.; Zhang, H.; Zhang, Y.; Li, C.; Zhu, X. A Noncontact Breathing Disorder Recognition System Using 2.4-GHz Digital-IF Doppler Radar. IEEE J. Biomed. Health Inform. 2019, 23, 208–217. [Google Scholar] [CrossRef]
- Li, C.; Xiao, Y.; Lin, J. Experiment and Spectral Analysis of a Low-Power Ka-Band Heartbeat Detector Measuring from Four Sides of a Human Body. IEEE Trans. Microw. Theory Tech. 2006, 54, 4464–4471. [Google Scholar] [CrossRef]
- Li, C.; Lin, J. Optimal Carrier Frequency of Non-contact Vital Sign Detectors. In Proceedings of the 2007 IEEE Radio and Wireless Symposium, Long Beach, CA, USA, 7–12 January 2007; pp. 281–284. [Google Scholar]
- Anghel, A.; Vasile, G.; Cacoveanu, R.; Ioana, C.; Ciochina, S. Short-Range Wideband FMCW Radar for Millimetric Displacement Measurements. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5633–5642. [Google Scholar] [CrossRef] [Green Version]
- Pfeffer, C.; Feger, R.; Wagner, C.; Stelzer, A. FMCW MIMO Radar System for Frequency-Division Multiple TX-Beamforming. IEEE Trans. Microw. Theory Tech. 2013, 61, 4262–4274. [Google Scholar] [CrossRef]
- Ash, M.; Ritchie, M.; Chetty, K.; Brennan, P.V. A New Multistatic FMCW Radar Architecture by Over-the-Air Deramping. IEEE Sens. J. 2015, 15, 7045–7053. [Google Scholar] [CrossRef]
- Khan, F.; Ghaffar, A.; Khan, N.; Cho, S.H. An Overview of Signal Processing Techniques for Remote Health Monitoring Using Impulse Radio UWB Transceiver. Sensors 2020, 20, 2479. [Google Scholar] [CrossRef]
- Tantiparimongkol, L.; Phasukkit, P. Experiment of UWB Pulse Generator using FPGA based on Delay Line-Based Pulse Generation for Radar Application. In Proceedings of the 2018 International Symposium on Multimedia and Communication Technology (ISMAC 2018), Tottori, Japan, 29–31 August 2018. [Google Scholar]
- Bolea, M.; Mora, J.; Ortega, B.; Capmany, J. Flexible Monocycle UWB Generation for Reconfigurable Access Networks. IEEE Photonics Technol. Lett. 2010, 22, 878–880. [Google Scholar] [CrossRef]
- Li, J.; Liang, Y.; Wong, K.K. Millimeter-Wave UWB Signal Generation via Frequency Up-Conversion Using Fiber Optical Parametric Amplifier. IEEE Photonics Technol. Lett. 2009, 21, 1172–1174. [Google Scholar]
- Han, J.; Nguyen, C. A new ultra-wideband, ultra-short monocycle pulse generator with reduced ringing. IEEE Microw. Wirel. Compon. Lett. 2002, 12, 206–208. [Google Scholar]
- Hsieh, C.; Chiu, Y.; Shen, Y.; Chu, T.; Huang, Y. A UWB Radar Signal Processing Platform for Real-Time Human Respiratory Feature Extraction Based on Four-Segment Linear Waveform Model. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 219–230. [Google Scholar] [CrossRef]
- Strackx, M.; Faes, B.; D’Agostino, E.; Leroux, P.; Reynaert, P. FPGA based flexible UWB pulse transmitter using EM subtraction. Electron. Lett. 2013, 49, 1243–1244. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Fu, S.; Wu, J.; Ngo, N.Q.; Xu, K.; Li, Y.; Hong, X.; Shum, P.; Lin, J. UWB Impulse Radio Transmitter Using an Electrooptic Phase Modulator Together with a Delay Interferometer. IEEE Photonics Technol. Lett. 2010, 22, 1479–1481. [Google Scholar] [CrossRef]
- Chen, X.; Kiaei, S. Monocycle shapes for ultra wideband system. In Proceedings of the 2002 IEEE International Symposium on Circuits and Systems (ISCAS), Phoenix-Scottsdale, AZ, USA, 26–29 May 2002. [Google Scholar]
- Zhang, J.; Abhayapala, T.D.; Kennedy, R.A. Role of pulses in ultra wideband systems. In Proceedings of the 2005 IEEE International Conference on Ultra-Wideband, Zurich, Switzerland, 5–8 September 2005; pp. 565–570. [Google Scholar]
- Rittiplang, A.; Phasukkit, P. UWB Radar for Multiple Human Detection Through the Wall Based on Doppler Frequency and Variance Statistic. In Proceedings of the 2019 12th Biomedical Engineering International Conference (BMEiCON), Ubon Ratchathani, Thailand, 19–22 November 2019; pp. 1–5. [Google Scholar]
- Baldi, M.; Chiaraluce, F.; Zanaj, B.; Moretti, M. Analysis and simulation of algorithms for vital signs detection using UWB radars. In Proceedings of the 2011 IEEE International Conference on Ultra-Wideband (ICUWB), Bologna, Italy, 14–16 September 2011; pp. 341–345. [Google Scholar]
- Lazaro, A.; Girbau, D.; Villarino, R.; Ramos, A. Vital signs monitoring using impulse based UWB signal. In Proceedings of the 2011 41st European Microwave Conference, Manchester, UK, 10–13 October 2011; pp. 135–138. [Google Scholar]
- Lazaro, A.; Girbau, D.; Villarino, R. Analysis of Vital Signs Monitoring Using an IR-UWB Radar. Prog. Electromagn. Res. 2010, 100, 265–284. [Google Scholar] [CrossRef] [Green Version]
- Rong, Y.; Bliss, D.W. Remote Sensing for Vital Information Based on Spectral-Domain Harmonic Signatures. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 3454–3465. [Google Scholar] [CrossRef]
- Mabrouk, M.; Rajan, S.; Bolic, M.; Batkin, I.; Dajani, H.R.; Groza, V.Z. Model of human breathing reflected signal received by PN-UWB radar. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 4559–4562. [Google Scholar]
- Rong, Y.; Bliss, D.W. Direct RF Signal Processing for Heart-Rate Monitoring Using UWB Impulse Radar. In Proceedings of the 2018 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 28–31 October 2018; pp. 1215–1219. [Google Scholar]
- Venkatesh, S.; Anderson, C.R.; Rivera, N.V.; Buehrer, R.M. Implementation and analysis of respiration-rate estimation using impulse-based UWB. In Proceedings of the MILCOM 2005—2005 IEEE Military Communications Conference, Atlantic City, NJ, USA, 17–20 October 2005; Volume 5, pp. 3314–3320. [Google Scholar]
- Ren, L.; Wang, H.; Naishadham, K.; Kilic, O.; Fathy, A.E. Phase-Based Methods for Heart Rate Detection Using UWB Impulse Doppler Radar. IEEE Trans. Microw. Theory Tech. 2016, 64, 3319–3331. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, H.; Fang, G.; Ye, S.; Gulliver, T.A. An Improved Algorithm for Through-Wall Target Detection Using Ultra-Wideband Impulse Radar. IEEE Access 2017, 5, 22101–22118. [Google Scholar] [CrossRef]
- Ren, L.; Koo, Y.S.; Wang, H.; Wang, Y.; Liu, Q.; Fathy, A.E. Noncontact Multiple Heartbeats Detection and Subject Localization Using UWB Impulse Doppler Radar. IEEE Microw. Wirel. Compon. Lett. 2015, 25, 690–692. [Google Scholar] [CrossRef]
- Xu, Y.; Dai, S.; Wu, S.; Chen, J.; Fang, G. Vital Sign Detection Method Based on Multiple Higher Order Cumulant for Ultrawideband Radar. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1254–1265. [Google Scholar] [CrossRef]
- Huang, X.; Sun, L.; Tian, T.; Huang, Z.; Clancy, E. Real-time non-contact infant respiratory monitoring using UWB radar. In Proceedings of the 2015 IEEE 16th International Conference on Communication Technology (ICCT), Hangzhou, China, 18–21 October 2015; pp. 493–496. [Google Scholar]
- Xu, Y.; Chen, J.; Dai, S.; Fang, G. Experimental Study of UWB Pulse Radar for Life Detection. In Proceedings of the 2011 1st International Conference on Instrumentation, Measurement, Computer, Communication and Control, Beijing, China, 21–23 October 2011; pp. 729–732. [Google Scholar]
- Naishadham, K.; Piou, J.E.; Ren, L.; Fathy, A.E. Estimation of Cardiopulmonary Parameters from Ultra Wideband Radar Measurements Using the State Space Method. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 1037–1046. [Google Scholar] [CrossRef]
- Eren, C.; Karamzadeh, S.; Kartal, M. The artifacts of human physical motions on vital signs monitoring. In Proceedings of the 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), Istanbul, Turkey, 24–26 April 2019; pp. 1–5. [Google Scholar]
- Liang, X.; Deng, J.; Zhang, H.; Gulliver, T.A. Ultra-Wideband Impulse Radar Through-Wall Detection of Vital Signs. Sci. Rep. 2018, 8, 13367. [Google Scholar] [CrossRef] [Green Version]
- Xikun, H.; Jin, T. Short-Range Vital Signs Sensing Based on EEMD and CWT Using IR-UWB Radar. Sensors 2016, 16, 2025. [Google Scholar]
- Ghufran, S.; Veluvolu, K.C. Surface chest motion decomposition for cardiovascular monitoring. Sci. Rep. 2014, 4, 5093. [Google Scholar]
- Wikipedia contributors, "Gaussian integral," Wikipedia, The Free Encyclopedia. Available online: https://en.wikipedia.org/w/index.php?title=Gaussian_integral&oldid=953684338 (accessed on 20 May 2020).
- Lazaro, A.; Girbau, D.; Villarino, R. Techniques for Clutter Suppression in the Presence of Body Movements during the Detection of Respiratory Activity through UWB Radars. Sensors 2014, 14, 2595–2618. [Google Scholar] [CrossRef]
- Liang, F.; Qi, F.; An, Q.; Lv, H.; Chen, F.; Li, Z.; Wang, J. Detection of Multiple Stationary Humans Using UWB MIMO Radar. Sensors 2016, 16, 1922. [Google Scholar] [CrossRef] [Green Version]
- Quan, X.; Choi, J.W.; Cho, S.H. A New Thresholding Method for IR-UWB Radar-Based Detection Applications. Sensors 2020, 20, 2314. [Google Scholar] [CrossRef] [Green Version]
Parameters | Quantity | Value |
---|---|---|
d0 | nominal distance | 1 m |
σv | reflection amplitude | 1 |
mh | heartbeat amplitude | 0.08 mm |
fh | heartbeat frequency | 1.1 Hz (66 beats/min) |
mr | respiratory amplitude | 1.8 mm |
fr | respiratory frequency | 0.4 Hz (24 beats/min) |
A0 | Tx voltage | 1 V |
kc | central frequency | 6 GHz (follow FCC) |
fs_fast | sampling frequency in fast time | 1000 GHz (for comparing to theory) |
PRI | pulse repetition interval | 25 ns |
τmax | maximum slow time | 100 s |
fs_slow | sampling frequency in slow time | 200 Hz |
Block | Manufacturer | Specifications |
---|---|---|
UWB source | HP-8133A pulse generator | 0.5 V Peak voltage, Central frequency 3 GHz, |
Tx and Rx antennas | Vivaldi type (S-band) | 2–5 GHz, 10 dBi Angular width (3 dB) ≈ 45° |
PA | ZVE-8G + Mini-Circuits | 2–8 GHz, 30 dBm |
LNA | R&K-AA260-OS | 2–5 GHz, 26 dBm |
ADC | Agilent Oscilloscope, Infiniium DSO80604B | Max frequency 6 GHz Sampling rate 40 GSa/s |
USB port | Agilent GPIB, 82357B | Transfer over 850 KB/sec |
Belt sensor | BIOPAC Systems | Records respiratory effort |
Transmission Power | - | −5 dBm, bandwidth of 2–5 GHz |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rittiplang, A.; Phasukkit, P.; Orankitanun, T. Optimal Central Frequency for Non-Contact Vital Sign Detection Using Monocycle UWB Radar. Sensors 2020, 20, 2916. https://doi.org/10.3390/s20102916
Rittiplang A, Phasukkit P, Orankitanun T. Optimal Central Frequency for Non-Contact Vital Sign Detection Using Monocycle UWB Radar. Sensors. 2020; 20(10):2916. https://doi.org/10.3390/s20102916
Chicago/Turabian StyleRittiplang, Artit, Pattarapong Phasukkit, and Teerapong Orankitanun. 2020. "Optimal Central Frequency for Non-Contact Vital Sign Detection Using Monocycle UWB Radar" Sensors 20, no. 10: 2916. https://doi.org/10.3390/s20102916
APA StyleRittiplang, A., Phasukkit, P., & Orankitanun, T. (2020). Optimal Central Frequency for Non-Contact Vital Sign Detection Using Monocycle UWB Radar. Sensors, 20(10), 2916. https://doi.org/10.3390/s20102916