Improving Neural Network Detection Accuracy of Electric Power Bushings in Infrared Images by Hough Transform
Abstract
:1. Introduction
2. Object Detection Based on YOLOv2 Network
2.1. Detection Process of the YOLOv2 Network
2.2. Defects in YOLOv2 Training Results
- (1)
- In multiple sets of images, the IBs with different tilt angles have poor recognition results.
- (2)
- Some recognition results show a large deviation between the OGT and BB, and the Intersection-over-Union (IoU) is low, which affects the recognition accuracy.
3. Modified Algorithm for YOLOv2 Network
3.1. Image Rotation Algorithm Based on Standard Hough Transform
3.1.1. Feature Extraction Algorithm Based on Standard Hough Transform
3.1.2. Image Rotation Range
3.1.3. Optimal Recognition Angle
3.2. Modified Algorithm of Sliding Window Based on Gap Statistic Algorithm
3.2.1. Bounding Box Sliding Range
3.2.2. Gap Statistic Algorithm Based on K-Means
3.2.3. Optimal Sliding Range
3.2.4. Optimal Bounding Box
3.3. Bounding Box Modified Algorithm Based on YOLOv2 Network
Algorithm 1: BB modified algorithm based on YOLOv2 network |
Input: Image, prediction results of the YOLOv2 network {xi, yi, wi, hi} and scorei |
Output: |
1: Feature extraction of SHT: |
2: Rotation range ψ: ; |
3: Best recognition angle algorithm: |
4: YOLOv2, |
5: Sliding position of BB: |
6: SHT: |
7: Gap statistic algorithm based on K-means: |
8: if |
9: ; |
10: return |
11: if |
12: |
13: return |
14: End |
4. Experiment and Result Analysis
4.1. Experimental Data
4.2. Network and Parameters
4.3. Model Evaluation
4.3.1. Precision-Recall Curve
4.3.2. Mean Intersection-Over-Union
4.3.3. Mean Average Precision
4.4. Comparison of Different Algorithms
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yuan, F.; Guo, J.; Xiao, Z.; Zeng, B.; Zhu, W.; Huang, S. A transformer fault diagnosis model based on chemical reaction optimization and twin support vector machine. Energies 2019, 12, 960. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Yassine, O.; Kosel, J. A Surface Acoutic Wave Passive and Wireless Sensor for Magnetic Fields, Temperature, and Humidity. IEEE Sens. J. 2015, 15, 453–462. [Google Scholar] [CrossRef]
- Pospori, A.; Marques, C.; Saez-Rodriguez, D.; Nielsen, K.; Bang, O.; Webb, D. Thermal and chemical treatment of polymer optical fiber bragg grating sensors for enhanced mechanical sensitivity. Opt. Fiber Technol. 2017, 36, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Saxena, M.K.; Raju, S.J.; Arya, R.; Pachori, R.B.; Ravindranath, S.V.G.; Kher, S.; Oak, S.M. Empirical Mode Decomposition-Based Detection of Bend-Induced Error and Its Correction in a Raman Optical Fiber Distributed Temperature Sensor. IEEE Sens. J. 2016, 16, 1243–1252. [Google Scholar] [CrossRef]
- Zhang, Y.-C.; Chen, Y.-M.; Luo, C. A method for improving temperature measurement precision on the uncooled infrared thermal imager. Measurement 2015, 74, 64–69. [Google Scholar] [CrossRef]
- Jaffery, Z.A.; Dubey, A.K. Design of early fault detection technique for electrical assets using infrared thermograms. Int. J. Elect. Power Energy Syst. 2014, 63, 753–759. [Google Scholar] [CrossRef]
- Zhao, Z.; Fan, X.; Xu, G.; Zhang, L.; Qi, Y.; Zhang, K. Aggregating Deep Convolutional Feature Maps for Insulator Detection in Infrared Images. IEEE Access 2017, 5, 21831–21839. [Google Scholar] [CrossRef]
- Qi, S.; Ma, J.; Lin, J.; Li, Y.; Tian, J. Unsupervised Ship Detection Based on Saliency and S-HOG Descriptor from Optical Satellite Images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1451–1455. [Google Scholar]
- Nogueira, K.; Penatti, O.A.B.; Santos, J.A. Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recognit. 2017, 61, 539–556. [Google Scholar] [CrossRef] [Green Version]
- Li, Y. A Novel Fast Retina Keypoint Extraction Algorithm for Multispectral Images Using Geometric Algebra. IEEE Access 2019, 7, 167895–167903. [Google Scholar] [CrossRef]
- Dong, G.; Yan, H.; Lv, G.; Dong, X. Exploring the utilization of gradient information in SIFT based local image descriptors. Symmetry 2019, 11, 998. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Shi, Y.; Cao, W. GA-SURF: A new speeded-up robust feature extraction algorithm for multispectral images based on geometric algebra. Pattern Recognit. Lett. 2019, 15, 11–17. [Google Scholar] [CrossRef]
- Cheng, H.; Zhai, Y.; Chen, R.; Wang, D.; Dong, Z.; Wang, Y. Self-Shattering Defect Detection of Glass Insulators Based on Spatial Features. Energie 2019, 12, 543. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Xu, G.; Qi, Y. Representation of binary feature pooling for detection of insulator strings in infrared images. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 2858–2866. [Google Scholar] [CrossRef]
- Zhai, Y.; Chen, R.; Yang, Q.; Li, X.; Zhao, Z. Insulator Fault Detection Based on Spatial Morphological Features of Aerial Images. IEEE Access 2018, 6, 35316–35326. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Y.; Yi, X.; Zhang, M.; Chen, X.; Cui, M.; Yan, F. An Automatic Corona-discharge Detection System for Railways Based on Solar-blind Ultraviolet Detection. Curr. Opt. Photonics 2017, 1, 196–202. [Google Scholar]
- Zhai, Y.; Cheng, H.; Chen, R.; Yang, Q.; Li, X. Multi-Saliency Aggregation-Based Approach for Insulator Flashover Fault Detection Using Aerial Images. Energies 2018, 11, 340. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000 Better, Faster, Stronger. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Zhang, Z.; Guo, W.; Zhu, S.; Yu, W. Toward Arbitrary-Oriented Ship Detection with Rotated Region Proposal and Discrimination Networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1745–1749. [Google Scholar] [CrossRef]
- Yang, X.; Sun, H.; Sun, X.; Yan, M.; Guo, Z.; Fu, K. Position Detection and Direction Prediction for Arbitrary-Oriented Ships via Multitask Rotation Region Convolutional Neural Network. IEEE Access 2018, 6, 50839–50849. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Weng, L.; Yang, Y. Ship Rotated Bounding Box Space for Ship Extraction from High-Resolution Optical Satellite Images with Complex Backgrounds. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1074–1078. [Google Scholar] [CrossRef]
- Chang, Y.L.; Anagaw, A.; Chang, L.; Wang, Y.C.; Hsiao, C.Y.; Lee, W.H. Ship Detection Based on YOLOv2 for SAR Imagery. Remote Sens. 2019, 11, 786. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Yang, S.; Yang, S.; Zhao, C.; Tian, G.; Gao, Y.; Chen, Y.; Lu, Y. Automatic thyroid nodule recognition and diagnosis in ultrasound imaging with the Yolov2 neural network. World J. Surg. Oncol. 2019, 17, 12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wu, R.; Xu, K.; Wang, J.; Sun, W. R-cnn-based ship detection from high resolution remote sensing imagery. Remote Sens. 2019, 11, 631. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.K.; Ahmed, M.U.; Rhee, P.K. Incremental Deep Learning for Robust Object Detection in Unknown Cluttered Environments. IEEE Access 2018, 6, 61748–61760. [Google Scholar] [CrossRef]
- Wang, G.; Tse, P.W.; Yuan, M. Automatic internal crack detection from a sequence of infrared images with triple-threshold Canny edge detector. Meas. Sci. Technol. 2018, 29, 025403–025417. [Google Scholar] [CrossRef]
- Tibshirani, R.; Walther, G.; Hastie, T. Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B 2001, 63, 411–423. [Google Scholar] [CrossRef]
- Mariprasath, T.; Kirubakaran, V. A real time study on condition monitoring of distribution transformer using thermal imager. Infrared Phys. Technol. 2018, 90, 78–86. [Google Scholar] [CrossRef]
- Ding, J.; Chen, B.; Liu, H.; Huang, M. Convolutional neural network with data augmentation for SAR target recognition. IEEE Geosci. Remote Sens. Lett. 2016, 13, 364–368. [Google Scholar] [CrossRef]
- Wang, Z.; Du, L.; Mao, J.; Liu, B.; Yang, D. SAR Target Detection Based on SSD with Data Augmentation and Transfer Learning. IEEE Geosci. Remote Sens. Lett. 2019, 16, 150–154. [Google Scholar] [CrossRef]
- Zheng, W.-S.; Gong, S.; Xiang, T. Quantifying and transferring contextual information in object detection. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 762–777. [Google Scholar] [CrossRef] [Green Version]
- Suong, L.K.; Jangwoo, K. Detection of Potholes Using a Deep Convolutional Neural Network. J. Univers. Comput. Sci. 2018, 24, 1244–1257. [Google Scholar]
- Min, W.; Li, X.; Wang, Q.; Zeng, Q.; Liao, Y. New approach to vehicle license plate location based on new model YOLO-L and plate pre-identification. IET Image Proc. 2019, 13, 1041–1049. [Google Scholar] [CrossRef]
- Cheng, M.-M.; Mitra, N.J.; Huang, X.; Torr, P.H.S.; Hu, S.-M. Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 569–582. [Google Scholar] [CrossRef] [Green Version]
- Fu, G.-H.; Xu, F.; Zhang, B.-Y.; Yi, L.-Z. Stable variable selection of class-imbalanced data with precision-recall criterion. Chemom. Intell. Lab. Syst. 2017, 171, 241–250. [Google Scholar] [CrossRef]
- Gerard, S.E.; Patton, T.J.; Christensen, G.E. FissureNet: A Deep Learning Approach For Pulmonary Fissure Detection in CT Images. IEEE Trans. Med. Imaging 2019, 38, 156–166. [Google Scholar] [CrossRef]
- Wang, W.X.; Fu, Y.T.; Dong, F.; Li, F. Semantic segmentation of remote sensing ship image via a convolutional neural networks model. IET Image Proc. 2019, 13, 1016–1022. [Google Scholar] [CrossRef]
- Zou, Z.; Shi, Z. Random access memories: A new paradigm for target detection in high resolution aerial remote sensing images. IEEE Trans. Image Proc. 2018, 27, 1100–1111. [Google Scholar] [CrossRef]
Method | Rotating | Contrast Changing | Salt & Pepper |
---|---|---|---|
Amount | 600 | 300 | 300 |
Method | Translation | Mirroring | Histogram Equalization |
Amount | 300 | 600 | 300 |
Algorithm | YOLOv2 | 3.1 * | Final Result ** |
---|---|---|---|
Iteration | 5000 | ||
Recall | 0.6149 | 0.77 | 0.77 |
MIoU | 0.4703 | 0.5091 | 0.6174 |
mAP | 54.14% | 70.62% | 74.49% |
Iteration | 10,000 | ||
Recall | 0.7489 | 0.89 | 0.89 |
MIoU | 0.5402 | 0.5943 | 0.6892 |
mAP | 68.55% | 82.43% | 86.45% |
Iteration | 15,000 | ||
Recall | 0.8375 | 0.95 | 0.95 |
MIoU | 0.6032 | 0.6666 | 0.7581 |
mAP | 71.03% | 93.11% | 96.23% |
Iteration | 20,000 | ||
Recall | 0.8154 | 0.93 | 0.93 |
MIoU | 0.6145 | 0.6759 | 0.7608 |
mAP | 71.85% | 93.33% | 97.33% |
Algorithm | YOLO | YOLOv2 | YOLOv3 | Proposed Algorithm |
---|---|---|---|---|
mAP | 58.85% | 71.85% | 91.23% | 97.33% |
Rotation Angle | YOLO | YOLOv2 | YOLOv3 | Proposed Algorithm |
---|---|---|---|---|
−30° | 30.48% | 60.26% | 71.42% | 89.47% |
−20° | 49.43% | 67.71% | 86.74% | 94.94% |
−10° | 55.52% | 71.81% | 89.49% | 97.33% |
10° | 54.17% | 73.04% | 87.42% | 96.36% |
20° | 50.92% | 70.78% | 82.38% | 93.43% |
30° | 29.43% | 61.41% | 73.26% | 90.41% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Zhang, Z. Improving Neural Network Detection Accuracy of Electric Power Bushings in Infrared Images by Hough Transform. Sensors 2020, 20, 2931. https://doi.org/10.3390/s20102931
Zhao H, Zhang Z. Improving Neural Network Detection Accuracy of Electric Power Bushings in Infrared Images by Hough Transform. Sensors. 2020; 20(10):2931. https://doi.org/10.3390/s20102931
Chicago/Turabian StyleZhao, Hongshan, and Zeyan Zhang. 2020. "Improving Neural Network Detection Accuracy of Electric Power Bushings in Infrared Images by Hough Transform" Sensors 20, no. 10: 2931. https://doi.org/10.3390/s20102931
APA StyleZhao, H., & Zhang, Z. (2020). Improving Neural Network Detection Accuracy of Electric Power Bushings in Infrared Images by Hough Transform. Sensors, 20(10), 2931. https://doi.org/10.3390/s20102931