Accelerated Tests on Si and SiC Power Transistors with Thermal, Fast and Ultra-Fast Neutrons
Abstract
:1. Introduction
2. Experimental Section
2.1. Devices
2.2. The TRIGA Mark II Nuclear Reactor
2.3. The ChipIr Facility
2.4. The Neutron Tester
3. Results and Discussion
3.1. Test with Thermal and Fast Neutrons
3.2. Neutron Test at the ChipIr Facility
3.2.1. Analysis in the Time Domain
3.2.2. Analysis of Degradation Phenomena
3.2.3. Failure Rate Analysis
3.2.4. Effect of the Negative Gate Voltage
4. Conclusions
- SEGR failure was not observed in all devices regardless of the gate and drain bias conditions.
- The power devices that survived the tests did not show degradation in the electrical parameters even when irradiated with gate bias close to the Fowler–Nordheim onset.
- For the same bias drain voltage, the negative gate bias did not increase the FIT values in MOSFETs with different technologies and materials.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oberg, D.L.; Wert, J.L.; Normand, E.; Majewski, P.P.; Wender, S.A. First observations of power MOSFET burnout with high energy neutrons. IEEE Trans. Nucl. Sci. 1996, 43, 2913–2920. [Google Scholar] [CrossRef]
- Ziegler, J.F. Terrestrial cosmic rays. IBM J. Res. Dev. 1996, 40, 19–39. [Google Scholar]
- Goldhagen, P. Cosmic-Ray Neutrons on the Ground and in the Atmosphere. MRS Bull. 2003, 28, 131–135. [Google Scholar]
- Soelkner, G. Ensuring the reliability of power electronic devices with regard to terrestrial cosmic radiation. Microelectron. Reliab. 2016, 58, 39–50. [Google Scholar] [CrossRef]
- Bauer, F.D. Accurate analytical modelling of cosmic ray induced failure rates of power semiconductor devices. Solid-State Electron. 2009, 53, 584–589. [Google Scholar]
- Gordon, M.S.; Goldhagen, P.; Rodbell, K.P.; Zabel, T.H.; Tang, H.H.K.; Clem, J.M.; Bailey, P. Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground. IEEE Trans. Nucl. Sci. 2004, 51, 3427–3434. [Google Scholar]
- Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices. JEDEC Stand. 2006, JESD89A.
- Hands, A.; Morris, P.; Ryden, K.; Dyer, C.; Truscott, P.; Chugg, A.; Parker, S. Single Event Effects in Power MOSFETs Due to Atmospheric and Thermal Neutrons. IEEE Trans. Nucl. Sci. 2011, 58, 2687–2694. [Google Scholar] [CrossRef]
- Lambert, D.; Desnoyers, F.; Thouvenot, D.; Azais, B. Single Event Effects in Power MOSFETs and IGBTs Due to 14 MeV and 25 meV Neutrons. In Proceedings of the 2014 IEEE Radiation Effects Data Workshop (REDW), Paris, France, 14–18 July 2014; pp. 1–8. [Google Scholar]
- Yazdi, M.B.; Schmeidl, M.; Wu, X.; Neyer, T. A concise study of neutron irradiation effects on power MOSFETs and IGBTs. Microelectron. Reliab. 2016, 62, 74–78. [Google Scholar] [CrossRef]
- Lichtenwalner, D.J.; Akturk, A.; McGarrity, J.; Richmond, J.; Barbieri, T.; Hull, B.; Grider, D.; Allen, S.; Palmour, J.W. Reliability of SiC Power Devices against Cosmic Ray Neutron Single-Event Burnout. Mater. Sci. Forum 2018, 924, 559–562. [Google Scholar] [CrossRef]
- Lichtenwalner, D.J.; Hull, B.; Van Brunt, E.; Sabri, S.; Gajewski, D.A.; Grider, D.; Allen, S.; Palmour, J.W.; Akturk, A.; McGarrity, J. Reliability studies of SiC vertical power MOSFETs. In Proceedings of the 2018 IEEE International Reliability Physics Symposium (IRPS), Burlingame, CA, USA, 11–15 March 2018; pp. 2B.2-1–2B.2-6. [Google Scholar]
- Akturk, A.; Wilkins, R.; McGarrity, J.; Gersey, B. Single Event Effects in Si and SiC Power MOSFETs Due to Terrestrial Neutrons. IEEE Trans. Nucl. Sci. 2017, 64, 529–535. [Google Scholar] [CrossRef]
- Akturk, A.; McGarrity, J.M.; Goldsman, N.; Lichtenwalner, D.; Hull, B.; Grider, D.; Wilkins, R. Terrestrial Neutron-Induced Failures in Silicon Carbide Power MOSFETs and Diodes. IEEE Trans. Nucl. Sci. 2018, 65, 1248–1254. [Google Scholar] [CrossRef]
- Akturk, A.; McGarrity, J.M.; Goldsman, N.; Lichtenwalner, D.J.; Hull, B.; Grider, D.; Wilkins, R. Predicting Cosmic Ray-Induced Failures in Silicon Carbide Power Devices. IEEE Trans. Nucl. Sci. 2019, 66, 1828–1832. [Google Scholar] [CrossRef]
- Titus, J.L. An Updated Perspective of Single Event Gate Rupture and Single Event Burnout in Power MOSFETs. IEEE Trans. Nucl. Sci. 2013, 60, 1912–1928. [Google Scholar] [CrossRef]
- Ball, D.R.; Sierawski, B.D.; Galloway, K.F.; Johnson, R.A.; Alles, M.L.; Sternberg, A.L.; Witulski, A.F.; Reed, R.A.; Schrimpf, R.D.; Javanainen, A.; et al. Estimating Terrestrial Neutron-Induced SEB Cross Sections and FIT Rates for High-Voltage SiC Power MOSFETs. IEEE Trans. Nucl. Sci. 2019, 66, 337–343. [Google Scholar]
- Test Procedure for the Measurement of Terrestrial Cosmic Ray Induced Destructive Effects in Power Semiconductor Devices. JEDEC Stand. 2015, JEP151.
- Cazzaniga, C.; Frost, C.D. Progress of the Scientific Commissioning of a fast neutron beamline for Chip Irradiation. J. Phys. Conf. Ser. 2018, 1021, 012037. [Google Scholar] [CrossRef]
- Asai, H.; Nashiyama, I.; Sugimoto, K.; Shiba, K.; Sakaide, Y.; Ishimaru, Y.; Okazaki, Y.; Noguchi, K.; Morimura, T. Tolerance Against Terrestrial Neutron-Induced Single-Event Burnout in SiC MOSFETs. IEEE Trans. Nucl. Sci. 2014, 61, 3109–3114. [Google Scholar]
- Felgemacher, C.; Araújo, S.V.; Zacharias, P.; Nesemann, K.; Gruber, A. Cosmic radiation ruggedness of Si and SiC power semiconductors. In Proceedings of the 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Prague, Czech Republic, 12–16 June 2016; pp. 51–54. [Google Scholar]
- Werner, C. (Ed.) MCNP Users Manual, Los Alamos National Laboratory, report LA-UR-17-29981. 2017.
- Bortolussi, S.; Protti, N.; Ferrari, M.; Postuma, I.; Fatemi, S.; Prata, M.; Ballarini, F.; Carante, M.; Farias, R.; González, S.; et al. Neutron flux and gamma dose measurement in the BNCT irradiation facility at the TRIGA reactor of the University of Pavia. Nucl. Instrum. Methods Phys. Res., Sect. B 2018, 414, 113–120. [Google Scholar] [CrossRef]
- Pintacuda, F.; D’Arrigo, S.; Di Mauro, A.; Cantarella, V.; Principato, F.; Cazzaniga, C. CHIPIR Commercial: Neutron test on Mosfet from STMicroelectronics, STFC ISIS Neutron and Muon Source. Available online: https://data.isis.stfc.ac.uk/doi/STUDY/108678764/ (accessed on 26 May 2020).
- Shibata, K.; Iwamoto, O.; Nakagawa, T.; Iwamoto, N.; Ichihara, A.; Kunieda, S.; Chiba, S.; Furutaka, K.; Otuka, N.; Ohsawa, T.; et al. JENDL-4.0: A New Library for Nuclear Science and Engineering. J. Nucl. Sci. Technol. 2011, 48, 1–30. [Google Scholar]
- Pintacuda, F.; Cantarella, V.; Muschitiello, M.; Massetti, S. Prototyping and characterization of radiation hardened SiC MOS structures. In Proceedings of the 2019 European Space Power Conference (ESPC), Juan-les-Pins, France, 30 September–4 October 2019; pp. 1–8. [Google Scholar]
- Bolotnikov, A.; Losee, P.; Permuy, A.; Dunne, G.; Kennerly, S.; Rowden, B.; Nasadoski, J.; Harfman-Todorovic, M.; Raju, R.; Tao, F.; et al. Overview of 12kV–2.2kV SiC MOSFETs targeted for industrial power conversion applications. In Proceedings of the 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 15–19 March 2015; pp. 2445–2452. [Google Scholar]
- Zeller, H.R. Cosmic ray induced failures in high power semiconductor devices. Microelectron. Reliab. 1997, 37, 1711–1718. [Google Scholar] [CrossRef]
- Mitin, E.V.; Malinin, V.G. Investigation of SEGR Cross-Section in Power MOSFETs under Proton Irradiation. In Proceedings of the 2015 15th European Conference on Radiation and Its Effects on Components and Systems (RADECS), Moscow, Russia, 14–18 September 2015; pp. 1–3. [Google Scholar] [CrossRef]
- Ferlet-Cavrois, V.; Binois, C.; Carvalho, A.; Ikeda, N.; Inoue, M.; Eisener, B.; Gamerith, S.; Chaumont, G.; Pintacuda, F.; Javanainen, A.; et al. Statistical Analysis of Heavy-Ion Induced Gate Rupture in Power MOSFETs—Methodology for Radiation Hardness Assurance. IEEE Trans. Nucl. Sci. 2012, 59, 2920–2929. [Google Scholar]
Device | Part Number | Label | (V) |
---|---|---|---|
MOSFET SiC | GEN3 technology (under development) | SiC_A | 1200 |
MOSFET SiC | SCT100N120G2D2AG | SiC_B | 1200 |
MOSFET SiC | SCT30N120 | SiC_C | 1200 |
MOSFET SiC | SCT35N65G2V | SiC_D | 650 |
MOSFET Si | STW12N120K5 | Si_A | 1200 |
MOSFET Si | STH2N120K5 | Si_B | 1200 |
MOSFET Si | STH22N95K5 | Si_C | 950 |
MOSFET Si | ST88N65M5 | Si_D | 650 |
MOSFET Si | STB45N40DM2AG | Si_E | 400 |
IGBT | STG200M65F2D8AG | I_A | 650 |
IGBT | STGW40H120DF2 | I_B | 1200 |
IGBT | STGW40H65DFB | I_C | 650 |
Energy Range | Neutron Flux (cm s) | ||
---|---|---|---|
Upstream of the Boral Shield | Downstream of the Boral Shield | ||
Thermal | 0.414 eV | 1.6 | 2.2 |
Epithermal | 0.414 eV10.7 eV | 6.2 | 2.0 |
Epithermal | 10.7 eV1.58 keV | 6.3 | 3.8 |
Fast | 1.58 keV2 MeV | 5.8 | 5.2 |
Fast | 2 MeV6 MeV | 3.1 | 2.7 |
Fast | 6 MeV17.3 MeV | 1.2 | 1.2 |
(V) | (V) | FIT | Lower 95% Confidence Limit | Upper 95% Confidence Limit | |
---|---|---|---|---|---|
IGBT I_B | 1100 | 0.0 | 0.33 | 0.09 | 0.72 |
MOSFET Si_D | 560 | 0.0 | 0.56 | 0.35 | 0.82 |
MOSFET | (V) | (V) | FIT | Lower 95% Confidence Limit | Upper 95% Confidence Limit |
---|---|---|---|---|---|
SiC_A | 950 | 0.0 | 1.06 | 0.55 | 1.73 |
950 | −4.0 | 0.62 | 0.27 | 1.12 | |
SiC_D | 480 | 0.0 | 4.25 | 2.48 | 6.50 |
480 | −4.0 | 4.28 | 2.45 | 6.63 | |
Si_E | 325 | 0.0 | 50.2 | 32.1 | 72.1 |
325 | −10.0 | 37.9 | 24.0 | 54.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Principato, F.; Altieri, S.; Abbene, L.; Pintacuda, F. Accelerated Tests on Si and SiC Power Transistors with Thermal, Fast and Ultra-Fast Neutrons. Sensors 2020, 20, 3021. https://doi.org/10.3390/s20113021
Principato F, Altieri S, Abbene L, Pintacuda F. Accelerated Tests on Si and SiC Power Transistors with Thermal, Fast and Ultra-Fast Neutrons. Sensors. 2020; 20(11):3021. https://doi.org/10.3390/s20113021
Chicago/Turabian StylePrincipato, Fabio, Saverio Altieri, Leonardo Abbene, and Francesco Pintacuda. 2020. "Accelerated Tests on Si and SiC Power Transistors with Thermal, Fast and Ultra-Fast Neutrons" Sensors 20, no. 11: 3021. https://doi.org/10.3390/s20113021
APA StylePrincipato, F., Altieri, S., Abbene, L., & Pintacuda, F. (2020). Accelerated Tests on Si and SiC Power Transistors with Thermal, Fast and Ultra-Fast Neutrons. Sensors, 20(11), 3021. https://doi.org/10.3390/s20113021