Performance of a Low-Cost Sensor Community Air Monitoring Network in Imperial County, CA
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Air Quality Results
3.2. Under-Reporting by Government Monitors
3.3. Network Maintenance
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.; Shelow, D.; Hindin, D.A.; Kilaru, V.; Preuss, P.W. The Changing Paradigm of Air Pollution Monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.K.-A.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duvall, R.; Long, R.; Beaver, M.R.; Kronmiller, K.G.; Wheeler, M.L.; Szykman, J.J. Performance Evaluation and Community Application of Low-Cost Sensors for Ozone and Nitrogen Dioxide. Sensors 2016, 16, 1698. [Google Scholar] [CrossRef] [PubMed]
- Malings, C.; Tanzer, R.; Hauryliuk, A.; Kumar, S.P.N.; Zimmerman, N.; Kara, L.B.; Presto, A.A.; Subramanian, R. Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring. Atmos. Meas. Tech. 2019, 12, 903–920. [Google Scholar] [CrossRef] [Green Version]
- Sofia, D.; Giuliano, A.; Gioiella, F. Air Quality monitoring network for tracking pollutants. The case study of Salerno city center. Chem. Eng. Trans. 2018, 68, 67–72. [Google Scholar]
- Carvlin, G.; Lugo, H.; Olmedo, L.; Bejarano, E.; Wilkie, A.; Meltzer, D.; Wong, M.; King, G.; Northcross, A.; Jerrett, M.; et al. Development and field validation of a community-engaged particulate matter air quality monitoring network in Imperial, California, USA. J. Air Waste Manag. Assoc. 2017, 67, 1342–1352. [Google Scholar] [CrossRef]
- Wong, M.; Bejarano, E.; Carvlin, G.; Fellows, K.; King, G.; Lugo, H.; Jerrett, M.; Meltzer, D.; Northcross, A.; Olmedo, L.; et al. Combining Community Engagement and Scientific Approaches in Next-Generation Monitor Siting: The Case of the Imperial County Community Air Network. Int. J. Environ. Res. Public Health 2018, 15, 523. [Google Scholar] [CrossRef] [Green Version]
- United States Census Bureau. QuickFacts, Imperial County, California. Available online: https://www.census.gov/quickfacts/fact/table/imperialcountycalifornia/PST045216 (accessed on 24 October 2017).
- California Air Resources Board. Trends Summary. Available online: http://www.arb.ca.gov/adam/trends/trends1.php (accessed on 13 February 2017).
- California Air Resources Board. Imperial County 2013 State Implementation Plan for the Federal PM2.5 Standard. Available online: https://www.arb.ca.gov/board/books/2014/121814/14-10-2pres.pdf (accessed on 20 June 2017).
- United States Department of Transportation, Bureau of Transportation Statistics. Border Crossing/Entry Data. Available online: https://transborder.bts.gov/programs/international/transborder/TBDR_BC/TBDR_BCQ.html (accessed on 24 April 2017).
- Imperial County Air Pollution Control District. Available online: http://www.co.imperial.ca.us/12 (accessed on 24 October 2017).
- Pacific Institute. Hazard’s Toll: The Costs of Inaction at the Salton Sea. Available online: http://pacinst.org/app/uploads/2014/09/PacInst_HazardsToll_low-res.pdf (accessed on 6 July 2017).
- English, P.; Olmedo, L.; Bejarano, E.; Lugo, H.; Murillo, E.; Seto, E.; Wong, M.; King, G.; Wilkie, A.; Meltzer, D.; et al. The Imperial County Community Air Monitoring Network: A Model for Community-based Environmental Monitoring for Public Health Action. Environ. Health Perspect. 2017, 125, 074501. [Google Scholar] [CrossRef] [Green Version]
- U.S. Environmental Protection Agency. Air Quality Index (AQI) Basics. Available online: https://airnow.gov/index.cfm?action=aqibasics.aqi (accessed on 18 October 2019).
- U.S. Environmental Protection Agency. Office of Air Quality Planning and Standards. EPA 454/B-18-007 September 2018. Technical Assistance Document for the Reporting of Daily Air Quality—the Air Quality Index (AQI). Available online: https://www3.epa.gov/airnow/aqi-technical-assistance-document-sept2018.pdf (accessed on 19 July 2019).
- Hammond, D.; Garcia, A. Recent Particulate Matter Monitoring Enhancements in Imperial Valley. In Proceedings of the California Air Pollution Control Officers Association “Back to the Basics” Air Monitoring Symposium, San Diego, CA, USA, 7 March 2018. [Google Scholar]
- Guarnieri, M.; Balmes, J.R. Outdoor air pollution and asthma. Lancet 2014, 383, 1581–1592. [Google Scholar] [CrossRef] [Green Version]
- An, Z.; Jin, Y.; Li, J.; Li, W.; Wu, W. Impact of Particulate Air Pollution on Cardiovascular Health. Curr. Allergy Asthma Rep. 2018, 18, 15. [Google Scholar] [CrossRef]
- Klepac, P.; Locatelli, I.; Korošec, S.; Künzli, N.; Kukec, A. Ambient air pollution and pregnancy outcomes: A comprehensive review and identification of environmental public health challenges. Environ. Res. 2018, 167, 144–159. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Garcidueñas, L.; Leray, E.; Heydarpour, P.; Torres-Jardón, R.; Reis, J. Air pollution, a rising environmental risk factor for cognition, neuroinflammation and neurodegeneration: The clinical impact on children and beyond. Rev. Neurol. 2016, 172, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Ford, B.; Martin, M.V.; Zelasky, S.E.; Fischer, E.V.; Anenberg, S.C.; Heald, C.L.; Pierce, J.R. Future Fire Impacts on Smoke Concentrations, Visibility, and Health in the Contiguous United States. GeoHealth 2018, 2, 229–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fairburn, J.; Schüle, S.A.; Dreger, S.; Hilz, L.K.; Bolte, G. Social Inequalities in Exposure to Ambient Air Pollution: A Systematic Review in the WHO European Region. Int. J. Environ. Res. Public Health 2019, 16, 3127. [Google Scholar] [CrossRef] [Green Version]
- WHO. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. Global Update 2005. Available online: https://apps.who.int/iris/bitstream/handle/10665/69477/WHO_SDE_PHE_OEH_06.02_eng.pdf;sequence=1 (accessed on 26 July 2019).
- Xie, S.; Qi, Y.Z.L.; Tang, X. Characteristics of air pollution in Beijing during sand-dust storm periods. Water Air Soil Pollut. Focus 2005, 5, 217–229. [Google Scholar] [CrossRef]
- Ioakimidis, C.S.; Galatoulas, N.-F.; Dallas, P.I.; Ibarra, L.M.C.; Margaritis, D.; Ioakimidis, C.S. Development and On-Field Testing of Low-Cost Portable System for Monitoring PM2.5 Concentrations. Sensors 2018, 18, 1056. [Google Scholar] [CrossRef] [Green Version]
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef]
- Budde, M.; El Masri, R.; Riedel, T.; Beigl, M. Enabling low-cost particulate matter measurement for participatory sensing scenarios. In Proceedings of the 12th International Conference on Ubiquitous Information Management and Communication—IMCOM 18, Langkawi, Malaysia, 15 Jan 2013; pp. 1–10. [Google Scholar]
- Zheng, T.; Bergin, M.H.; Johnson, K.K.; Tripathi, S.N.; Shirodkar, S.; Landis, M.S.; Sutaria, R.; Carlson, D. Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments. Atmos. Meas. Tech. 2018, 11, 4823–4846. [Google Scholar] [CrossRef] [Green Version]
- Jiao, W.; Hagler, G.; Williams, R.; Sharpe, R.; Brown, R.; Garver, D.; Judge, R.; Caudill, M.; Rickard, J.; Davis, M.; et al. Community Air Sensor Network (CAIRSENSE) project: Evaluation of low-cost sensor performance in a suburban environment in the southeastern United States. Atmos. Meas. Tech. 2016, 9, 5281–5292. [Google Scholar] [CrossRef] [Green Version]
- Seto, E.; Carvlin, G.; Austin, E.; Shirai, J.; Bejarano, E.; Lugo, H.; Olmedo, L.; Calderas, A.; Jerrett, M.; King, G.; et al. Next-Generation community air quality sensors for identifying air pollution episodes. Int. J. Environ. Res. Public Health 2019, 16, 3268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvlin, G.; Lugo, H.; Olmedo, L.; Bejarano, E.; Wilkie, A.; Meltzer, D.; Wong, M.; King, G.; Northcross, A.; Jerrett, M.; et al. Use of citizen science-derived data for spatial and temporal modeling of particulate matter near the US/Mexico border. Atmosphere 2019, 10, 495. [Google Scholar] [CrossRef] [Green Version]
- Bi, J.; Stowell, J.; Seto, E.Y.; English, P.B.; Al-Hamdan, M.Z.; Kinney, P.L.; Freedman, F.R.; Liu, Y. Contribution of low-cost sensor measurements to the prediction of PM2.5 levels: A case study in Imperial County, California, USA. Environ. Res. 2019, 180, 108810. [Google Scholar] [CrossRef] [PubMed]
- Ahangar, F.E.; Freedman, F.R.; Venkatram, A. Using low-cost air quality sensor networks to improve the spatial and temporal resolution of concentration maps. Int. J. Environ. Res. Public Health 2019, 16, 1252. [Google Scholar] [CrossRef] [Green Version]
- Wong, M.; Wilkie, A.; Garzón-Galvis, C.; King, G.; Olmedo, L.; Bejarano, E.; Lugo, H.; Meltzer, D.; Madrigal, D.; Claustro, M.; et al. Community-engaged air monitoring to build resilience near the us-mexico border. Int. J. Environ. Res. Public Health 2020, 17, 1092. [Google Scholar] [CrossRef] [Green Version]
- Madrigal, D.; Claustro, M.; Wong, M.; Bejarano, E.; Olmedo, L.; English, P. Developing youth environmental health literacy and civic leadership through community air monitoring in imperial county, California. Int. J. Environ. Res. Public Health 2020, 17, 1537. [Google Scholar] [CrossRef] [Green Version]
Regulatory † | Community Network | Two-Sample t-Test * | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | CV | Mean | SD | CV | t Statistic | p-Value | ||
PM2.5 | 2015 | 10.7 | 6.4 | 59.4 | 8.9 | 6.8 | 77 | 4.78 | <0.0001 |
2016 | 11.7 | 6.9 | 58.9 | 11 | 8.8 | 80.4 | 1.88 | 0.06 | |
2017 | 10.7 | 6.5 | 61 | 9.2 | 10.1 | 109 | 3.56 | 0.0004 | |
2018 | 11.7 | 8.5 | 72.6 | 10.6 | 10.1 | 95.7 | 1.85 | 0.0674 | |
PM10 | 2015 | 46 | 30.1 | 66.7 | 44.6 | 42.3 | 95 | 0.71 | 0.4763 |
2016 | 53.6 | 47.3 | 88.2 | 55.2 | 83.8 | 151.6 | −0.73 | 0.4631 | |
2017 | 45.5 | 36.4 | 80 | 42.8 | 71.1 | 166.1 | 1.52 | 0.1295 | |
2018 | 54.8 | 48 | 87.6 | 56 | 85 | 151.9 | −0.40 | 0.6913 |
Inter-Monitor Variance | Intra-Monitor Variance | ||
---|---|---|---|
PM2.5 | Community Network * | 89.20 | 74.32 |
Regulatory † | 3.86 | 45.98 | |
PM10 | Community Network * | 251.67 | 5765.69 |
Regulatory † | 36.09 | 1727.83 |
r2 | 95% BCa CI † | Bias | SE * | ||
---|---|---|---|---|---|
PM2.5 | 2015 | 0.357 | (0.204, 0.520) | −0.0018 | 0.081 |
2016 | 0.468 | (0.370, 0.592) | 0.0010 | 0.057 | |
2017 | 0.489 | (0.376, 0.612) | −0.0027 | 0.060 | |
2018 | 0.401 | (0.233, 0.507) | 0.0130 | 0.067 | |
PM10 | 2015 | 0.157 | (0.040, 0.322) | 0.0197 | 0.080 |
2016 | 0.538 | (0.373, 0.739) | 0.0019 | 0.093 | |
2017 | 0.577 | (0.369, 0.762) | −0.0075 | 0.099 | |
2018 | 0.673 | (0.469, 0.832) | −0.0105 | 0.094 |
Rho | 95% CI † | b * | |
---|---|---|---|
PM2.5 | 0.604 | (0.567, 0.638) | 0.926 |
PM10 | 0.692 | (0.661, 0.720) | 0.961 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
English, P.; Amato, H.; Bejarano, E.; Carvlin, G.; Lugo, H.; Jerrett, M.; King, G.; Madrigal, D.; Meltzer, D.; Northcross, A.; et al. Performance of a Low-Cost Sensor Community Air Monitoring Network in Imperial County, CA. Sensors 2020, 20, 3031. https://doi.org/10.3390/s20113031
English P, Amato H, Bejarano E, Carvlin G, Lugo H, Jerrett M, King G, Madrigal D, Meltzer D, Northcross A, et al. Performance of a Low-Cost Sensor Community Air Monitoring Network in Imperial County, CA. Sensors. 2020; 20(11):3031. https://doi.org/10.3390/s20113031
Chicago/Turabian StyleEnglish, Paul, Heather Amato, Esther Bejarano, Graeme Carvlin, Humberto Lugo, Michael Jerrett, Galatea King, Daniel Madrigal, Dan Meltzer, Amanda Northcross, and et al. 2020. "Performance of a Low-Cost Sensor Community Air Monitoring Network in Imperial County, CA" Sensors 20, no. 11: 3031. https://doi.org/10.3390/s20113031
APA StyleEnglish, P., Amato, H., Bejarano, E., Carvlin, G., Lugo, H., Jerrett, M., King, G., Madrigal, D., Meltzer, D., Northcross, A., Olmedo, L., Seto, E., Torres, C., Wilkie, A., & Wong, M. (2020). Performance of a Low-Cost Sensor Community Air Monitoring Network in Imperial County, CA. Sensors, 20(11), 3031. https://doi.org/10.3390/s20113031