Embedded Corrosion Sensing with ZnO-PVDF Sensor Textiles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the PVDF and ZnO Nonwoven Textile Mesh
2.2. Nanofiber Mesh Characterization
2.3. Preparation of Corrosion Sensor Sample
2.4. Electrochemical Impedance Spectroscopy (EIS) Experimental Setup.
3. Results and Discussion
3.1. Scanning Electron Microscopy (SEM)
3.2. X-ray Diffraction (XRD)
3.3. Fourier Transform Infrared Spectroscopy (FTIR)
3.4. Differential Scanning Calorimeter (DSC)
3.5. Piezoelectric Coefficient (d33) Test
3.6. Electrochemical Impedance Spectroscopy (EIS)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Augustyniak, A.; Tsavalas, J.; Ming, W. Early Detection of Steel Corrosion via “Turn-On” Fluorescence in Smart Epoxy Coatings. ACS Appl. Mater. Interfaces 2009, 1, 2618–2623. [Google Scholar] [CrossRef]
- Koch, G.H.; Brongers, M.P.; Thompson, N.G.; Virmani, Y.P.; Payer, J.H. Corrosion Cost and Preventive Strategies in the United States. Office of Infrastructure Research and Development; FHWA-RD-01-156; Federal Highway Administration (FHWA): Washington, DC, USA, March 2002. [Google Scholar]
- Cole, I.S. 2-Smart coatings for corrosion protection: An overview. In Handbook of Smart Coatings for Materials Protection; Makhlouf, A.S.H., Ed.; Woodhead Publishing: Sawston, UK, 2014; pp. 29–55. [Google Scholar]
- Cooper, G.L. Sensing probes and instruments for electrochemical and electrical resistance corrosion monitoring. In Corrosion Monitoring in Industrial Plants Using Nondestructive Testing and Electrochemical Methods; ASTM International: Conshohocken, PA, USA, 1986; pp. 237–250. [Google Scholar]
- Feng, W.; Patel, S.H.; Young, M.Y.; Zunino Iii, J.L.; Xanthos, M. Smart polymeric coatings-recent advances. Adv. Polym. Tech. 2007, 26, 1–13. [Google Scholar] [CrossRef]
- Zhang, J.; Frankel, G.S. Corrosion-Sensing Behavior of an Acrylic-Based Coating System. CORROSION 1999, 55, 957–967. [Google Scholar] [CrossRef]
- Frankel, G.S.; Buchheit, R.G.; Zhang, J. Corrosion-sensing composition and method of use. U.S. Patent 2003/0068824, 10 April 2003. Available online: https://patents.google.com/patent/US20030068824A1/en (accessed on 28 May 2020).
- Sibi, M.P.; Zong, Z. Determination of corrosion on aluminum alloy under protective coatings using fluorescent probes. Prog. Org. Coat. 2003, 47, 8–15. [Google Scholar] [CrossRef]
- Li, S.-m.; Zhang, H.-r.; Liu, J.-h. Preparation and performance of fluorescent sensing coating for monitoring corrosion of Al alloy 2024. Trans. Nonferrous Met. Soc. China 2006, 16, s159–s164. [Google Scholar] [CrossRef]
- Sottos, N.R.; White, S.R.; Li, W.; Matthews, C.C. Autonomic Damage Indication in Coatings. US Patent 10,174,221 B2. Available online: https://patents.google.com/patent/US10174221B2/en (accessed on 28 May 2020).
- Leung, K.C.; Wan, T.K.; Chen, L. A Novel Optical Fiber Sensor for Steel Corrosion in Concrete Structures. Sensors 2008, 8, 1960–1976. [Google Scholar] [CrossRef] [Green Version]
- Cooper, K.R.; Elster, J.; Jones, M.; Kelly, R.G. Optical fiber-based corrosion sensor systems for health monitoring of aging aircraft. In Proceedings of the 2001 IEEE Autotestcon Proceedings. IEEE Systems Readiness Technology Conference. (Cat. No.01CH37237), Valley Forge, PA, USA, 20–23 August 2001. [Google Scholar]
- Ahmed, R.; Rifat, A.A.; Yetisen, A.K.; Salem, M.S.; Yun, S.-H.; Butt, H. Optical microring resonator based corrosion sensing. RSC Adv. 2016, 6, 56127–56133. [Google Scholar] [CrossRef]
- Zhang, N.; Chen, W.; Zheng, X.; Hu, W.; Gao, M. Optical Sensor for Steel Corrosion Monitoring Based on Etched Fiber Bragg Grating Sputtered With Iron Film. IEEE Sens. J. 2015, 15, 3551–3556. [Google Scholar] [CrossRef]
- Da Silva Marques, R.; Prado, A.R.; Da Costa Antunes, P.F.; De Brito André, P.S.; Ribeiro, M.R.N.; Frizera-Neto, A.; Pontes, M.J. Corrosion Resistant FBG-Based Quasi-Distributed Sensor for Crude Oil Tank Dynamic Temperature Profile Monitoring. Sensors 2015, 15, 30693–30703. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Kim, Y.-G.; Jung, S.; Song, H.-S.; Lee, S.-M. Application of steel thin film electrical resistance sensor for in situ corrosion monitoring. Sens. Actuators B 2007, 120, 368–377. [Google Scholar] [CrossRef]
- Qian, H.; Xu, D.; Du, C.; Zhang, D.; Li, X.; Huang, L.; Deng, L.; Tu, Y.; Mol, J.M.C.; Terryn, H.A. Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties. J. Mater. Chem. A 2017, 5, 2355–2364. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.-Y.; Gao, S.-D.; Li, P.-P.; Zeng, R.-C.; Zhang, F.; Li, S.-Q.; Han, E.-H. Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31. Corros. Sci. 2017, 118, 84–95. [Google Scholar] [CrossRef]
- Wei, H.; Wang, Y.; Guo, J.; Shen, N.Z.; Jiang, D.; Zhang, X.; Yan, X.; Zhu, J.; Wang, Q.; Shao, L.; et al. Advanced micro/nanocapsules for self-healing smart anticorrosion coatings. J. Mater. Chem. A 2015, 3, 469–480. [Google Scholar] [CrossRef]
- Behzadnasab, M.; Mirabedini, S.M.; Esfandeh, M.; Farnood, R.R. Evaluation of corrosion performance of a self-healing epoxy-based coating containing linseed oil-filled microcapsules via electrochemical impedance spectroscopy. Prog. Org. Coat. 2017, 105, 212–224. [Google Scholar] [CrossRef]
- Qian, B.; Michailidis, M.; Bilton, M.; Hobson, T.; Zheng, Z.; Shchukin, D. Tannic complexes coated nanocontainers for controlled release of corrosion inhibitors in self-healing coatings. Electrochim. Acta 2019, 297, 1035–1041. [Google Scholar] [CrossRef]
- Cho, S.H.; White, S.R.; Braun, P.V. Self-healing polymer coatings. Adv. Mater. 2009, 21, 645–649. [Google Scholar] [CrossRef]
- Xia, D.-H.; Song, S.; Behnamian, Y.; Hu, W.; Cheng, F.; Luo, J.; Huet, F. Electrochemical Noise Applied in Corrosion Science: Theoretical and Mathematical Models towards Quantitative Analysis. J. Electrochem. Soc. 2020, 167, 081507. [Google Scholar] [CrossRef]
- Qi, X.; J Gelling, V. A review of different sensors applied to corrosion detection and monitoring. Recent Patents Corros. Sci. 2011, 1, 1–7. [Google Scholar] [CrossRef]
- Kittel, J.; Celati, N.; Keddam, M.; Takenouti, H. Influence of the coating–substrate interactions on the corrosion protection: characterisation by impedance spectroscopy of the inner and outer parts of a coating. Prog. Org. Coat. 2003, 46, 135–147. [Google Scholar] [CrossRef]
- Kittel, J.; Celati, N.; Keddam, M.; Takenouti, H. New methods for the study of organic coatings by EIS: New insights into attached and free films. Prog. Org. Coat. 2001, 41, 93–98. [Google Scholar] [CrossRef]
- Bierwagen, G.; Wang, X.; Tallman, D. In situ study of coatings using embedded electrodes for ENM measurements. Prog. Org. Coat 2003, 46, 163–175. [Google Scholar] [CrossRef]
- Su, Q.; Allahar, K.N.; Bierwagen, G.P. Application of embedded sensors in the thermal cycling of organic coatings. Corros. Sci. 2008, 50, 2381–2389. [Google Scholar] [CrossRef]
- Su, Q.; Allahar, K.; Bierwagen, G. Embedded electrode electrochemical noise monitoring of the corrosion beneath organic coatings induced by ac–dc–ac conditions. Electrochim. Acta 2008, 53, 2825–2830. [Google Scholar] [CrossRef]
- Allahar, K.N.; Upadhyay, V.; Bierwagen, G.P.; Gelling, V.J. Monitoring of a military vehicle coating under Prohesion exposure by embedded sensors. Prog. Org. Coat. 2009, 65, 142–151. [Google Scholar] [CrossRef]
- Sorayani Bafqi, M.S.; Bagherzadeh, R.; Latifi, M. Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency. J. Polym. Res. 2015, 22, 130. [Google Scholar] [CrossRef]
- Wu, H.; Huang, Y.; Xu, F.; Duan, Y.; Yin, Z. Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability. Adv. Mater. 2016, 28, 9881–9919. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, D.; D’Souza, N.A. One-step fabrication of biomimetic PVDF-BaTiO3 nanofibrous composite using DoE. Mater. Res. Express 2018, 5, 085308. [Google Scholar] [CrossRef]
- Randall, T.C.; Islam, S.K.; Mahbub, I.; McFarlane, N.; Yu, Y. A low-power, reconfigurable, pipelined ADC for implantable bioimpedance measurement system with vertically aligned carbon nanofibers (VACNF) electrodes. Analog Integr. Circuits Sign. Proces. 2016, 89, 139–149. [Google Scholar] [CrossRef]
- Cheng, K.-S.; Ko, Y.-F.; Wang, T. The Application of bioimpedance method for foot sole blood perfusion characterization. In Proceedings of the 2012 Sixth International Conference on Genetic and Evolutionary Computing, Kitakushu, Japan, 25–28 August 2012. [Google Scholar]
- Lumbroso, R.; Naas, N.; Beitel, L.K.; Lawrence, M.F.; Trifiro, M.A. Novel bioimpedance sensor for glucose recognition. In Proceedings of the 2007 International Symposium on Signals, Systems and Electronics, Montreal, QC, Canada, 30 July–2 August 2007. [Google Scholar]
- Bierwagen, G.P.; Allahar, K.N.; Su, Q.; Gelling, V.J. Electrochemically characterizing the ac–dc–ac accelerated test method using embedded electrodes. Corros. Sci. 2009, 51, 95–101. [Google Scholar] [CrossRef]
- Mansouri, S.; Sheikholeslami, T.F.; Behzadmehr, A. Investigation on the electrospun PVDF/NP-ZnO nanofibers for application in environmental energy harvesting. J. Mater. Res. Technol. 2019, 8, 1608–1615. [Google Scholar] [CrossRef]
- Suyitno, S.; Purwanto, A.; Lullus Lambang G Hidayat, R.; Sholahudin, I.; Yusuf, M.; Huda, S.; Arifin, Z. Fabrication and characterization of zinc oxide-based electrospun nanofibers for mechanical energy harvesting. J. Nanotechnol. Eng. Med. 2014, 5, 011002–011008. [Google Scholar] [CrossRef]
- Athauda, T.J.; Butt, U.; Ozer, R.R. One-dimensional hierarchical composite materials based on ZnO nanowires and electrospun blend nanofibers. RSC Adv. 2013, 3, 21431–21438. [Google Scholar] [CrossRef]
- Sun, B.; Li, X.; Zhao, R.; Ji, H.; Qiu, J.; Zhang, N.; He, D.; Wang, C. Electrospun poly (vinylidene fluoride)-zinc oxide hierarchical composite fiber membrane as piezoelectric acoustoelectric nanogenerator. J. Mater. Sci. 2019, 54, 2754–2762. [Google Scholar] [CrossRef]
- Kim, M.; Wu, Y.; Kan, E.; Fan, J. Breathable and Flexible Piezoelectric ZnO@PVDF Fibrous Nanogenerator for Wearable Applications. Polymers 2018, 10, 745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bormashenko, Y.; Pogreb, R.; Stanevsky, O.; Bormashenko, E. Vibrational spectrum of PVDF and its interpretation. Polym. Test. 2004, 23, 791–796. [Google Scholar] [CrossRef]
- Salimi, A.; Yousefi, A.A. Analysis Method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym. Test. 2003, 22, 699–704. [Google Scholar] [CrossRef]
- Satapathy, S.; Pawar, S.; Gupta, P.K.; Varma, K.B.R. Effect of annealing on phase transition in poly(vinylidene fluoride) films prepared using polar solvent. Bull. Mater. Sci. 2011, 34, 727. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.-S.; Lee, Y.S.; Joo, C.W.; Lee, S.G.; Park, J.K.; Han, K.-S. Electrospun PVDF nanofiber web as polymer electrolyte or separator. Electrochim. Acta 2004, 50, 339–343. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, S.; Kadlec, A. Piezoelectric and dielectric properties of nanoporous polyvinylidence fluoride (PVDF) films. In Proceedings of the Behavior and Mechanics of Multifunctional Materials and Composites, Las Vegas, NV, USA, 18 April 2016. [Google Scholar] [CrossRef]
- Amirudin, A.; Thieny, D. Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals. Prog. Org. Coat. 1995, 26, 1–28. [Google Scholar] [CrossRef]
- Chang, J.; Liang, G.; Gu, A.; Cai, S.; Yuan, L. The production of carbon nanotube/epoxy composites with a very high dielectric constant and low dielectric loss by microwave curing. Carbon 2012, 50, 689–698. [Google Scholar] [CrossRef]
- Zhang, X.; Si, Y.; Mo, J.; Guo, Z. Robust micro-nanoscale flowerlike ZnO/epoxy resin superhydrophobic coating with rapid healing ability. Chem. Eng. J. 2017, 313, 1152–1159. [Google Scholar] [CrossRef]
- Hu, C.; Li, Y.; Kong, Y.; Ding, Y. Preparation of poly(o-toluidine)/nano ZnO/epoxy composite coating and evaluation of its corrosion resistance properties. Synth. Met. 2016, 214, 62–70. [Google Scholar] [CrossRef]
Sample. | Average Fiber Diameter (µm) | Average Pore Area (µm2) | Porosity (%) |
---|---|---|---|
PVDF Fiber | 0.28 ± 0.08 | 0.015 ± 0.05 | 7.68 |
1% ZnO-PVDF Fiber | 0.23 ± 0.06 | 0.013 ± 0.03 | 7.61 |
3% ZnO-PVDF Fiber | 0.20 ± 0.09 | 0.011 ± 0.05 | 7.36 |
5% ZnO-PVDF Fiber | 0.16 ± 0.07 | 0.010 ± 0.03 | 6.75 |
Sample | F(β) (%) | d33 (pC/N) |
---|---|---|
PVDF Pellet | 48.45 | 5 |
PVDF Fiber | 67.80 | 32 |
1% ZnO-PVDF | 79.98 | 52 |
3% ZnO-PVDF | 80.23 | 55 |
5% ZnO-PVDF | 81.43 | 56 |
Sample | Tm (°C) | ΔH (J/g) | Corrected ΔH (J/g) | Xc (%) |
---|---|---|---|---|
PVDF | 160.12 | 19.70 | 19.70 | 19.05 |
1% ZnO-PVDF | 161.34 | 20.13 | 19.93 | 19.27 |
3% ZnO-PVDF | 160.41 | 20.72 | 20.10 | 19.44 |
5% ZnO-PVDF | 160.73 | 21.25 | 20.18 | 19.51 |
Day | ZnO wt% | Conf. | Rpore (MΩ) | Rct (GΩ) | Cpore (pF.sn-1.cm-2) | Cdl (µF.sn-1.cm-2) | Error for Rpore (%) | Error for Rct (%) | Error for Cpore (%) | Error forCct (%) |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | A | 2.48 ± 0.13 | 1.35 ± 0.13 | 6.13 ± 0.51 | 2.79 ± 0.25 | 4.92 | 7.35 | 3.15 | 5.61 |
B | 2.36 ± 0.15 | 1.25 ± 0.11 | 5.94 ± 0.90 | 2.63 ± 0.25 | ||||||
1 | A | 5.21 ± 0.48 | 5.67 ± 0.52 | 5.21 ± 0.48 | 5.45 ± 0.45 | 4.58 | 4.80 | 2.97 | 3.94 | |
B | 4.97 ± 0.59 | 5.40 ± 0.46 | 9.38 ± 1.24 | 5.23 ± 0.40 | ||||||
3 | A | 7.47 ± 1.05 | 8.51 ± 0.88 | 10.2 5 ±1.03 | 5.39 ± 0.56 | 4.02 | 3.92 | 5.06 | 6.67 | |
B | 7.17 ± 0.46 | 8.18 ± 1.01 | 9.73 ± 0.57 | 5.03 ± 0.45 | ||||||
5 | A | 8.74 ± 0.79 | 10.76 ± 0.98 | 11.49 ± 1.04 | 6.63 ± 0.60 | 6.12 | 5.91 | 3.89 | 5.09 | |
B | 8.32 ± 0.73 | 10.12 ± 0.64 | 11.05 ± 0.75 | 6.29 ± 0.44 | ||||||
1 | 0 | A | 2.47 ± 0.17 | 1.40 ± 0.11 | 5.91 ± 0.47 | 2.74 ± 0.32 | 5.34 | 6.23 | 1.08 | 5.12 |
B | 2.34 ± 0.22 | 1.31 ± 0.14 | 5.92 ± 1.27 | 2.60 ± 0.35 | ||||||
1 | A | 5.21 ± 0.66 | 5.67 ± 0.73 | 5.21 ± 0.66 | 5.45 ± 0.63 | 4.35 | 3.27 | 1.88 | 2.83 | |
B | 4.98 ± 0.49 | 5.48 ± 0.61 | 9.49 ± 1.72 | 5.29 ± 0.55 | ||||||
3 | A | 7.05 ± 0.29 | 8.02 ± 0.29 | 9.68 ± 0.35 | 5.08 ± 0.19 | 1.75 | 3.15 | 2.80 | 5.03 | |
B | 6.93 ± 0.47 | 7.76 ± 0.53 | 9.41 ± 0.10 | 4.82 ± 0.38 | ||||||
5 | A | 8.34 ± 0.56 | 10.27 ± 0.69 | 10.97 ± 0.74 | 6.33 ± 0.43 | 3.93 | 4.82 | 3.20 | 5.96 | |
B | 8.01 ± 0.70 | 9.78 ± 0.26 | 10.62 ± 0.20 | 6.08 ± 0.33 | ||||||
4 | 0 | A | 2.31 ± 0.28 | 1.35 ± 0.08 | 6.41 ± 0.75 | 2.88 ± 0.26 | 6.54 | 6.19 | 5.56 | 6.01 |
B | 2.16 ± 0.18 | 1.27 ± 0.15 | 6.06 ± 1.07 | 2.71 ± 0.43 | ||||||
1 | A | 2.81 ± 0.36 | 4.52 ± 0.58 | 2.81 ± 0.36 | 5.58 ± 0.72 | 3.11 | 3.52 | 4.99 | 3.82 | |
B | 2.72 ± 0.47 | 4.36 ± 0.34 | 9.46 ± 0.78 | 5.37 ± 0.57 | ||||||
3 | A | 6.33 ± 0.24 | 7.72 ± 0.28 | 9.77 ± 0.36 | 5.39 ± 0.20 | 5.43 | 2.43 | 4.42 | 9.94 | |
B | 5.99 ± 0.56 | 7.68 ± 0.10 | 9.34 ± 0.37 | 4.86 ± 0.19 | ||||||
5 | A | 6.82 ± 0.45 | 9.39 ± 0.63 | 11.36 ± 0.76 | 6.47 ± 0.43 | 6.14 | 4.41 | 3.70 | 5.23 | |
B | 6.40 ± 0.42 | 8.97±0.17 | 10.94 ± 0.38 | 6.13 ± 0.20 | ||||||
7 | 0 | A | 0.51 ± 0.55 | 0.31 ± 0.17 | 6.66 ± 0.81 | 3.08 ± 0.31 | 9.41 | 14.47 | 8.50 | 7.71 |
B | 1.46 ± 0.49 | 1.27 ± 0.17 | 6.10 ± 0.86 | 2.84 ± 0.40 | ||||||
1 | A | 1.44 ± 0.19 | 1.16 ± 0.85 | 1.44 ± 1.31 | 5.65 ± 0.72 | 2.70 | 11.97 | 3.21 | 10.82 | |
B | 1.48 ± 0.10 | 1.02 ± 0.98 | 9.93 ± 0.30 | 5.03 ± 0.12 | ||||||
3 | A | 2.53 ± 0.09 | 4.67 ± 0.17 | 10.62 ± 0.39 | 6.28 ± 0.22 | 13.83 | 14.37 | 9.67 | 10.22 | |
B | 2.18 ±0.33 | 3.99 ± 0.41 | 9.60 ± 0.59 | 5.64 ± 0.38 | ||||||
5 | A | 2.47 ± 0.16 | 5.24 ± 0.42 | 12.48 ± 0.84 | 7.07 ± 0.47 | 12.20 | 14.15 | 8.68 | 0.30 | |
B | 2.17 ± 0.17 | 4.50 ± 0.71 | 11.40 ± 0.71 | 7.05 ± 0.13 | ||||||
10 | 0 | A | 0.10 ± 0.05 | 0.15 ± 0.12 | 6.96 ± 0.82 | 3.15 ± 0.24 | 26.00 | 2.92 | 9.65 | 16.30 |
B | 0.07 ± 0.07 | 0.15 ± 0.08 | 6.28 ± 0.79 | 2.64 ± 0.49 | ||||||
1 | A | 0.09 ± 0.21 | 0.11 ± 0.22 | 0.09 ± 1.54 | 5.75 ± 1.74 | 17.03 | 12.47 | 3.93 | 14.67 | |
B | 0.08 ± 0.39 | 0.10 ± 0.05 | 12.45 ± 3.56 | 4.91 ± 0.28 | ||||||
3 | A | 1.67 ± 0.24 | 1.02 ± 0.44 | 10.81 ± 0.39 | 7.08 ± 0.26 | 19.51 | 25.07 | 10.81 | 10.91 | |
B | 1.34 ± 0.18 | 0.77 ± 0.12 | 9.65 ± 0.76 | 6.31 ± 0.35 | ||||||
5 | A | 1.78 ± 0.32 | 1.21 ± 0.28 | 12.80 ± 0.99 | 7.32 ± 0.49 | 24.70 | 16.04 | 9.71 | 15.36 | |
B | 1.34 ± 0.19 | 1.02 ± 0.41 | 11.56 ± 0.67 | 6.20 ± 0.12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chowdhury, T.; D’Souza, N.; Ho, Y.H.; Dahotre, N.; Mahbub, I. Embedded Corrosion Sensing with ZnO-PVDF Sensor Textiles. Sensors 2020, 20, 3053. https://doi.org/10.3390/s20113053
Chowdhury T, D’Souza N, Ho YH, Dahotre N, Mahbub I. Embedded Corrosion Sensing with ZnO-PVDF Sensor Textiles. Sensors. 2020; 20(11):3053. https://doi.org/10.3390/s20113053
Chicago/Turabian StyleChowdhury, Tonoy, Nandika D’Souza, Yee Hsien Ho, Narendra Dahotre, and Ifana Mahbub. 2020. "Embedded Corrosion Sensing with ZnO-PVDF Sensor Textiles" Sensors 20, no. 11: 3053. https://doi.org/10.3390/s20113053
APA StyleChowdhury, T., D’Souza, N., Ho, Y. H., Dahotre, N., & Mahbub, I. (2020). Embedded Corrosion Sensing with ZnO-PVDF Sensor Textiles. Sensors, 20(11), 3053. https://doi.org/10.3390/s20113053