Strain and Temperature Sensitivities Along with Mechanical Properties of CNT Buckypaper Sensors
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of Buckypaper
2.2. Testing and Characterization
3. Results and Discussion
3.1. Morphology of Buckypaper
3.2. Thermal Stability
3.3. Mechanical Properties
3.4. Strain Sensitivity
3.5. Temperature Sensitivity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Iijima, S. Helical microtubules of graphite carbon. Nature 1991, 354, 56–58. [Google Scholar]
- Pipes, R.B.; Frankland, S.J.V.; Hubert, P.; Saether, E. Self-consistent properties of the SWCN and hexagonal arrays as composite reinforcements. Compos. Sci. Technol. 2003, 63, 1349–1358. [Google Scholar] [CrossRef]
- Yu, M.F.; Files, B.S.; Arepalli, S.; Ruoff, R.S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 2000, 84, 5552. [Google Scholar] [PubMed] [Green Version]
- Yang, D.J.; Zhang, Q.; Chen, G.; Yoon, S.F.; Ahn, J.; Wang, S.G.; Zhou, Q.; Wang, Q.; Li, J.Q. Thermal conductivity of multiwalled carbon nanotubes. Phys. Rev. B 2002, 66, 165440. [Google Scholar]
- Gao, B.; Chen, Y.F.; Fuhrer, M.S.; Glattli, D.C.; Bachtold, A. Four point resistance of individual single-wall carbon nanotube. Phys. Rev. Lett. 2005, 95, 196802. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.Y.; Yang, S.J.; Park, J.Y.; Kim, T.; Lee, K.; Kim, Y.S.; Han, H.N.; Park, C.R. Easy preparation of self-assembled high-density buckypaper with enhanced mechanical properties. Nano Lett. 2015, 15, 190–197. [Google Scholar] [CrossRef]
- Hone, J.; Llaguno, M.C.; Nemes, N.M.; Johnson, A.T.; Fischer, J.E.; Walters, D.A. Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl. Phys. Lett. 2000, 77, 666–668. [Google Scholar]
- Zhao, Y.; Li, D.; Xiao, L.; Liu, J.; Xiao, X.; Li, G.; Jin, Y.; Jiang, K.; Wang, J.; Fan, S.; et al. Radiation effects and radiation hardness solutions for single-walled carbon nanotube-based thin film transistors and logic devices. Carbon 2016, 108, 363–371. [Google Scholar] [CrossRef]
- Che, J.F.; Chen, P.; Chan-Park, M.B. High-strength carbon nanotube buckypaper composites as applied to free-standing electrodes for supercapacitors. J. Mater. Chem. A 2013, 1, 4057–4066. [Google Scholar]
- Chen, I.-W.P.; Cottinet, P.-J.; Tsai, S.-Y.; Foster, B.; Liang, R.; Wang, B.; Zhang, C. Improved performance of carbon nanotube buckypaper and ionic-liquid-in-Nafion actuators for rapid response and high durability in the open air. Sens. Actuators B Chem. 2012, 171, 515–521. [Google Scholar]
- Zhang, Z.; Wei, H.; Liu, Y.; Leng, J. Self-sensing properties of smart composite based on embedded buckypaper layer. Struct. Health Monit. 2015, 14, 127–136. [Google Scholar] [CrossRef]
- Lu, S.; Chen, D.; Wang, X.; Xiong, X.; Ma, K.; Zhang, L.; Meng, Q. Monitoring the glass transition temperature of polymeric composites with carbon nanotube buckypaper sensor. Polym. Test. 2017, 57, 12–16. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, D.; Peng, H.-X. A pressurized filtration technique for fabricating carbon nanotube buckypaper: Structure, mechanical and conductive properties. Microporous Mesoporous Mater. 2014, 184, 127–133. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Li, M.; Gu, Y.; Zhang, Z. Piezoresistive response of carbon nanotube composite film under laterally compressive strain. Sens. Actuators A Phys. 2018, 273, 140–146. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, D.; Peng, H.-X.; Qin, F. Enhanced mechanical and electrical properties of carbon nanotube buckypaper by in situ cross-linking. Carbon 2013, 63, 125–132. [Google Scholar] [CrossRef]
- Lu, S.; Chen, D.; Wang, X.; Shao, J.; Ma, K.; Zhang, L.; Araby, S.; Meng, Q. Real-time cure behaviour monitoring of polymer composites using a highly flexible and sensitive CNT buckypaper sensor. Compos. Sci. Technol. 2017, 152, 181–189. [Google Scholar]
- Arif, M.F.; Kumar, S.; Shah, T. Tunable morphology and its influence on electrical, thermal and mechanical properties of carbon nanostructure-buckypaper. Mater. Des. 2016, 101, 236–244. [Google Scholar] [CrossRef]
- Li, Z.; Xu, J.; O’Byrne, J.P.; Chen, L.; Wang, K.; Morris, M.A.; Holmes, J.D. Freestanding bucky paper with high strength from multi-wall carbon nanotubes. Mater. Chem. Phys. 2012, 135, 921–927. [Google Scholar] [CrossRef]
- Wang, G.D.; Li, N.; Melly, S.K.; Peng, T.; Li, Y.C.; Zhao, Q.D.; Ji, S.D. Monitoring the drilling process of GFRP laminates with carbon nanotube buckypaper sensor. Compos. Struct. 2019, 208, 114–126. [Google Scholar]
- Li, N.; Wang, G.D.; Melly, S.K.; Peng, T.; Li, Y.C.; Zhao, Q.D.; Ji, S.D. Interlaminar properties of GFRP laminates toughened by CNTs buckypaper interlayer. Compos. Struct. 2019, 208, 13–22. [Google Scholar] [CrossRef]
- Dao, V.-D.; Vu, N.H.; Choi, H.-S. All day Limnobium laevigatum inspired nanogenerator self-driven via water evaporation. J. Power Sources 2020, 448, 227388. [Google Scholar] [CrossRef]
- Dao, V.-D.; Vu, N.H.; Yun, S. Recent advances and challenges for solar-driven water evaporation system toward applications. Nano Energy 2020, 68, 104324. [Google Scholar] [CrossRef]
- Dao, V.-D.; Choi, H.-S. Carbon-Based Sunlight Absorbers in Solar-Driven Steam Generation Devices. Glob. Challenges 2018, 2, 1700094. [Google Scholar] [CrossRef] [PubMed]
- Dao, V.-D.; Chien, N.D.; Strek, W. Enthusiastic discussions on solid physic and material science at SPMS2019. Scie. Technol. Dev. J. 2020, 23, 490–498. [Google Scholar]
- Lu, D.; Mo, Z.; Liang, B.; Yang, L.; He, Z.; Zhu, H.; Tang, Z.; Gui, X. Flexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding. Carbon 2018, 133, 457–463. [Google Scholar] [CrossRef]
- Dao, V.-D.; Choi, H.-S. Dry plasma synthesis of a MWNT–Pt nanohybrid as an efficient and low-cost counter electrode material for dye-sensitized solar cells. Chem. Commun. 2013, 49, 8910–8912. [Google Scholar] [CrossRef]
- Dang, H.-L.T.; Tran, N.A.; Dao, V.-D.; Vu, N.H.; Quang, D.V.; Vu, H.H.T.; Nguyen, T.H.; Pham, T.-D.; Hoang, X.-C.; Nguyen, H.T.; et al. Carbon nanotubes-ruthenium as an outstanding catalyst for triiodide ions reduction. Synth. Met. 2020, 260, 116299. [Google Scholar] [CrossRef]
- Kim, A.-Y.; Kim, M.K.; Kim, J.Y.; Wen, Y.; Gu, L.; Dao, V.-D.; Choi, H.-S.; Byun, D.; Lee, J.K. Ordered SnO nanoparticles in MWCNT as a functional host material for high-rate lithium-sulfur battery cathode. Nano Res. 2017, 10, 2083–2095. [Google Scholar] [CrossRef]
- Muramatsu, H.; Hayashi, T.; Kim, Y.A.; Shimamoto, D.; Kim, Y.J.; Tantrakarn, K.; Endo, M.; Terrones, M.; Dresselhaus, M.S. Pore structure and oxidation stability of double-walled carbon nanotube-derived bucky paper. Chem. Phys. Lett. 2005, 414, 444–448. [Google Scholar]
- Zha, J.W.; Shehzad, K.; Li, W.K.; Dang, Z.M. The effect of aspect ratio on the piezoresistive behavior of the multiwalled carbon nanotubes/thermoplastic elastomer nanocomposites. J. Appl. Phys. 2013, 113, 014102. [Google Scholar] [CrossRef]
- Li, A.; Bogdanovich, A.E.; Bradford, P.D. Aligned carbon nanotube sheet piezoresistive strain sensors. Smart Mater. Struct. 2015, 24, 095004. [Google Scholar]
- Zhang, X.; Sreekumar, T.V.; Liu, T.; Kumar, S. Properties and Structure of Nitric Acid Oxidized Single Wall Carbon Nanotube Films. J. Phys. Chem. B 2004, 108, 16435–16440. [Google Scholar]
- Roy, S.; Jain, V.; Bajpai, R.; Ghosh, P.; Pente, A.S.; Singh, B.P.; Misra, D.S. Formation of carbon nanotube bucky paper and feasibility study for filtration at the nano and molecular scale. J. Phys. Chem. C 2012, 116, 19025–19031. [Google Scholar] [CrossRef]
- Sastry, A.; Wang, C.W.; Berhan, L. Deformation and failure in stochastic fibrous networks: Scale, dimension and application. Key Eng. Mater. 2001, 200, 229–250. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
Tensile Properties | High Aspect Ratio MWCNT Buckypaper | Low Aspect Ratio MWCNT Buckypaper |
---|---|---|
Young’s modulus GPa | 0.679 ± 0.025 | 0.528 ± 0.019 |
Tensile strength MPa | 17.3 ± 0.29 | 3.19 ± 0.10 |
Fracture strain | 0.122 ± 0.003 | 0.018 ± 0.0005 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Her, S.-C.; Hsu, W.-C. Strain and Temperature Sensitivities Along with Mechanical Properties of CNT Buckypaper Sensors. Sensors 2020, 20, 3067. https://doi.org/10.3390/s20113067
Her S-C, Hsu W-C. Strain and Temperature Sensitivities Along with Mechanical Properties of CNT Buckypaper Sensors. Sensors. 2020; 20(11):3067. https://doi.org/10.3390/s20113067
Chicago/Turabian StyleHer, Shiuh-Chuan, and Wei-Chun Hsu. 2020. "Strain and Temperature Sensitivities Along with Mechanical Properties of CNT Buckypaper Sensors" Sensors 20, no. 11: 3067. https://doi.org/10.3390/s20113067
APA StyleHer, S. -C., & Hsu, W. -C. (2020). Strain and Temperature Sensitivities Along with Mechanical Properties of CNT Buckypaper Sensors. Sensors, 20(11), 3067. https://doi.org/10.3390/s20113067