Implementation of a Phase Synchronization Scheme Based on Pulsed Signal at Carrier Frequency for Bistatic SAR
Abstract
:1. Introduction
2. Pulsed Signal at Carrier Frequency Synchronization Implementation Scheme
2.1. Synchronization Scheme Description
- The phase synchronization signal is exchanged by virtue of a time slot between radar signals; thus, the normal work of the BiSAR satellites can be prevented from being interrupted. Time diagrams of the synchronization pulse exchange are shown in Figure 2.
- The primary satellite and the slave satellite demodulate and collect the phase synchronization pulses received, respectively. In the data processing, the compensation phase is extracted by fast Fourier transform (FFT) operation of the pulsed signal, and the echo of the slave satellite is compensated by the compensation phase to complete the phase synchronization.
- Pulse compression by FFT operation. The data are transformed into frequency domain;
- The peak phases are extracted at peak position of amplitude in the compression synchronization data.
2.2. Synchronization Scheme Performance Analysis
2.3. Comparison between Pulsed Signal at Carrier Frequency and LFM Signal
3. Pulsed Signal at Carrier Frequency Phase Synchronization Scheme Verification
3.1. Synchronization Scheme Performance Analysis
3.2. Hardware Implementation of Phase Synchronization Scheme
4. Discussion
4.1. Theoretical Error Analysis
4.2. Results of Test Experiment
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SAR | Synthetic aperture radar |
BiSAR | Bistatic synthetic aperture radar |
LFM | Linear frequency modulation |
PRT | Pulse repetition time |
PRF | Pulse repetition frequency |
GNSS | Global navigation satellite system |
FFT | Fast Fourier transform |
DEM | Digital elevation models |
PSCF | Pulsed signal at carrier frequency |
STD | Standard deviation |
SNR | Signal-noise ratio |
References
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Gerhard, K.; Irena, H.; Konstantinos, P.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef] [Green Version]
- Willey, C.A. Synthetic aperture radars—A paradigm for technology evolution. IEEE Trans. Aerosp. Electron. Syst. 1985, 21, 440–443. [Google Scholar] [CrossRef]
- D’Errico, M. Distributed Space Missions for Earth System Monitoring; Springer: New York, NY, USA, 2012. [Google Scholar]
- Sun, H.; Shimada, M.; Feng, X. Recent Advances in Synthetic Aperture Radar Remote Sensing—Systems, Data Processing, and Applications. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2013–2016. [Google Scholar] [CrossRef]
- Yun-Kai, D. Brief Analysis on the Development and Application of Spaceborne SAR. J. Radars 2012. [Google Scholar] [CrossRef]
- Krieger, G.; Moreira, A. Spaceborne Bi- and Multistatic SAR: Potential and Challenges. IEEE Proc. Radar Sonar Navig. 2013, 153, 184–198. [Google Scholar] [CrossRef] [Green Version]
- Krieger, G.; Younis, M. Impact of Oscillator Noise in Bistatic and Multistatic SAR. IEEE Geosci. Remote Sens. Lett. 2006, 3, 424–428. [Google Scholar] [CrossRef] [Green Version]
- Eineder, M. Ocillator clock drift compensation in bistatic interferometric SAR. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Toulouse, France, 21–25 July 2003. [Google Scholar]
- Pinheiro, M.; Rodriguezcassola, M. Reconstruction methods of missing SAR data: Analysis in the frame of TanDEM-X synchronization link. In Proceedings of the European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 23–26 April 2012. [Google Scholar]
- Krieger, G.; De Zan, F. Relativistic Effects in Bistatic SAR Processing and System Synchronization. In Proceedings of the European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 23–26 April 2012. [Google Scholar]
- Lopez-Dekker, P.; Mallorqui, J.J.; Serra-Morales, P.; Sanz-Marcos, J. Phase Synchronization and Doppler Centroid Estimation in Fixed Receiver Bistatic SAR Systems. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3459–3471. [Google Scholar] [CrossRef]
- Pinheiro, M.; Rodriguez-Cassola, M.; Prats-Iraola, P.; Andreas, R.; Gerhard, K.; Alberto, M. Reconstruction of Coherent Pairs of Synthetic Aperture Radar Data Acquired in Interrupted Mode. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1876–1893. [Google Scholar] [CrossRef]
- Hong, F.; Wang, R.; Zhang, Z.; Lu, P.; Timo, B. Integrated time and phase synchronization strategy for a multichannel spaceborne-stationary bistatic SAR system. Remote Sens. 2016, 8, 628. [Google Scholar] [CrossRef] [Green Version]
- Tian, W.; Liu, H.; Tao, Z. Frequency and time synchronization error analysis based on generalized signal model for Bistatic SAR. In Proceedings of the IET International Radar Conference, Guilin, China, 20–22 April 2009. [Google Scholar]
- Younis, M.; Metzig, R.; Krieger, G. Performance Prediction of a Phase Synchronization Link for Bistatic SAR. IEEE Geosci. Remote Sens. Lett. 2006, 3, 429–433. [Google Scholar] [CrossRef] [Green Version]
- Younis, M.; Metzig, R.; Krieger, G.; Klein, R. Performance Prediction and Verification for Bistatic SAR Synchronization Link. In Proceedings of the European Conference on Synthetic Aperture Radar (EUSAR), Dresden, Germany, 16–18 May 2006. [Google Scholar]
- Weib, M. Synchronisation of bistatic radar systems. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004. [Google Scholar]
- Breit, H.; Younis, M.; Niedermeier, A.; Grigorov, C.; Hueso-Gonzalez, J.; Krieger, G.; Eineder, M.; Fritz, T. Bistatic Synchronization and Processing of TanDEM-X Data. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011. [Google Scholar]
- Brautigam, B.; Gonzalez, J.H.; Schwerdt, M.; Bachmann, M. TerraSAR-X Instrument Calibration Results and Extension for TanDEM-X. IEEE Trans. Geosci. Remote Sens. 2010, 48, 702–715. [Google Scholar] [CrossRef]
- Krieger, G.; Zink, M.; Bachmann, M.; Benjamin, B.; Daniel, S.; Michele, M.; Paola, R.; Ulrich, S.; John Walter, A.; Francesco, D.Z. TanDEM-X: A Radar Interferometer with Two Formation Flying Satellites. Acta Astronaut. 2013, 89, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Duque, S.; Paco, L.-D.; Merlano, J.C.; Jordi, J.M. Bistatic SAR along track interferometry with multiple fixed receivers. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, IGARSS 2010, Honolulu, HI, USA, 25–30 July 2010. [Google Scholar]
- Walterscheid, I.; Espeter, T.; Gierull, C.H.; Jens, K.; Andreas, R.B.; Joachim, H.G.E. Results and Analysis of Hybrid Bistatic SAR Experiments with Spaceborne, Airborne and Stationary Sensors. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, IGARSS 2009, University of Cape Town, Cape Town, South Africa, 12–17 July 2009. [Google Scholar]
- Zhang, H.; Deng, Y.; Wang, R.; Li, N.; Zhao, S.; Hong, F.; Wu, L.; Otmar, L. Spaceborne/stationary bistatic SAR imaging with TerraSAR-X as an illuminator in staring-spotlight mode. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5203–5216. [Google Scholar] [CrossRef]
- Liang, D.; Liu, K.; Yue, H.; Chen, Y.; Deng, Y.; Zhang, H.; Li, C.; Jin, G.; Wang, R. An advanced non-interrupted synchronization scheme for bistatic synthetic aperture radar. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 1116–1119. [Google Scholar]
- Jin, G.; Liu, K.; Liu, D.; Liang, D.; Zhang, H.; Ou, N.; Zhang, Y.; Deng, Y.; Li, C.; Wang, R. An Advanced Phase Synchronization Scheme for LT-1. IEEE Trans. Geosci. Remote Sens. 2019. [Google Scholar] [CrossRef]
- Chen, J.Y.; Wong, K.W.; Cheng, L.M.; Shuai, J.W. A secure communication scheme based on the phase synchronization of chaotic systems. Chaos Interdiscip. J. Nonlinear Sci. 2003, 13, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Deng, Y. Synchronization. In Bistatic SAR System and Signal Processing Technology; Springer: Singapore, 2018; pp. 199–234. [Google Scholar]
- Walterscheid, I.; Espeter, T.; Brenner, A.R.; Jens, K.; Joachim, H.G.E.; Holger, N.; Wang, R.; Otmar, L. Bistatic SAR Experiments With PAMIR and TerraSAR-X—Setup, Processing, and Image Results. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3268–3279. [Google Scholar] [CrossRef]
- Gebhardt, U. Bistatic airborne/spaceborne hybrid experiment: Basic considerations. Proc. SPIE Int. Soc. Opt. Eng. 2005. [Google Scholar] [CrossRef]
- Wang, W.Q. GPS-Based Time & Phase Synchronization Processing for Distributed SAR. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 1040–1051. [Google Scholar]
Parameter | Value |
---|---|
Carrier frequency | 1.26 GHz |
Signal bandwidth | 80 MHz |
Sampling rate | 360 Mbps |
SNR | 30 dB |
PRF | 3000 Hz |
Total recorded pulse number | 360,000 |
Device | Peak-Peak | Standard (1σ) |
---|---|---|
LFM-phase signal | 0.978° | 0.524° |
PSCF-phase signal | 1.139° | 0.780° |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Liang, D.; Yue, H.; Liu, D.; Wu, X.; Zhang, H.; Jiao, Y.; Liu, K.; Wang, R. Implementation of a Phase Synchronization Scheme Based on Pulsed Signal at Carrier Frequency for Bistatic SAR. Sensors 2020, 20, 3188. https://doi.org/10.3390/s20113188
Chen Y, Liang D, Yue H, Liu D, Wu X, Zhang H, Jiao Y, Liu K, Wang R. Implementation of a Phase Synchronization Scheme Based on Pulsed Signal at Carrier Frequency for Bistatic SAR. Sensors. 2020; 20(11):3188. https://doi.org/10.3390/s20113188
Chicago/Turabian StyleChen, Yafeng, Da Liang, Haixia Yue, Dacheng Liu, Xiayi Wu, Heng Zhang, Yuanbo Jiao, Kaiyu Liu, and Robert Wang. 2020. "Implementation of a Phase Synchronization Scheme Based on Pulsed Signal at Carrier Frequency for Bistatic SAR" Sensors 20, no. 11: 3188. https://doi.org/10.3390/s20113188
APA StyleChen, Y., Liang, D., Yue, H., Liu, D., Wu, X., Zhang, H., Jiao, Y., Liu, K., & Wang, R. (2020). Implementation of a Phase Synchronization Scheme Based on Pulsed Signal at Carrier Frequency for Bistatic SAR. Sensors, 20(11), 3188. https://doi.org/10.3390/s20113188