Analysis of Ionospheric Disturbances Caused by the 2018 Bering Sea Meteor Explosion Based on GPS Observations
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data Introduction
2.2. Data Processing
3. Analysis of Ionospheric Disturbance Characteristics in the Vicinity of Meteor Explosion at AC60 Station
4. The Analysis of Long-Distance TID Characteristics Based on GPS Observations
5. Estimation of TID Propagation Velocity and Disturbance Source Location
6. Discussions
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brown, P.G.; Kalenda, P.; Revelle, D.O.; Boroviĉka, J. The Morávka meteorite fall: 2. Interpretation of infrasonic and seismic data. Meteorit. Planet. Sci. 2003, 38, 989–1003. [Google Scholar] [CrossRef]
- Kulichkov, S.N.; Popov, O.Y.; Avilov, K.V.; Chunchuzov, I.P.; Chkhetiani, O.G.; Smirnov, A.A. Simulating the Propagation of Infrasonic Waves and Estimating the Energy of the Chelyabinsk Meteoroid Explosion Observed on February 15, 2013. Izv. Atmos. Ocean. Phys. 2018, 54, 293–303. [Google Scholar] [CrossRef]
- Astafyeva, E.; Heki, K.; Kiryushkin, V.; Afraimovich, E.; Shalimov, S. Two-mode long-distance propagation of coseismic ionosphere disturbances. J. Geophys. Res. 2009, 114, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Galvan, D.A.; Komjathy, A.; Hickey, M.P.; Stephens, P.; Snively, J.; Song, Y.T.; Butala, M.D.; Mannucci, A.J. Ionospheric signatures of Tohoku-Oki tsunami of March 11, 2011: Model comparisons near the epicenter. Radio Sci. 2012, 47, RS4003. [Google Scholar] [CrossRef] [Green Version]
- Hines, C.O. On the nature of traveling ionospheric disturbances launched by low-altitude nuclear explosions. J. Geophys. Res. 1967, 72, 1877–1882. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Q.; Shah, M.; Hong, Z. Atmospheric-ionospheric disturbances following the April 2015 Calbuco volcano from GPS and OMI observations. Adv. Space Res. 2017, 60, 2836–2846. [Google Scholar] [CrossRef]
- Lin, C.C.H.; Chen, C.H.; Matsumura, M.; Lin, J.T.; Kakinami, Y. Observation and simulation of the ionosphere disturbance waves triggered by rocket exhausts. J. Geophys. Res. Space Phys. 2017, 122, 8868–8882. [Google Scholar] [CrossRef]
- Nykiel, G.; Zanimonskiy, Y.M.; Yampolski, Y.M.; Figurski, M. Efficient usage of dense GNSS networks in central Europe for the visualization and investigation of ionospheric TEC variations. Sensors 2017, 17, 2298. [Google Scholar] [CrossRef] [Green Version]
- Berngardt, O.I.; Kurkin, V.I.; Zherebtsov, G.A.; Kusonski, O.A.; Grigorieva, S.A. Ionospheric effects during first 2 hours after the Chelyabinsk meteorite impact. Sol. Terr. Phys. 2013, 24, 3–14. [Google Scholar]
- Berngardt, O.I. Seismo-ionospheric effects associated with ‘Chelyabinsk’ meteorite during the first 25 minutes after its fall. arXiv 2014, arXiv:1409.5927. [Google Scholar]
- Pradipta, R.; Valladares, C.E.; Doherty, P.H. Ionosonde observations of ionospheric disturbances due to the 15 February 2013 Chelyabinsk meteor explosion. Geophys. Res. Space Phys. 2015, 120, 9988–9997. [Google Scholar] [CrossRef]
- Gokhberg, M.B.; Ol’shanskaya, E.V.; Steblov, G.M.; Shalimov, S.L. The Chelyabinsk meteorite: Ionospheric response based on GPS measurements. Dokl. Earth Sci. 2013, 452, 948–952. [Google Scholar] [CrossRef]
- Ruzhin, Y.Y.; Kuznetsov, V.D.; Smirnov, V.M. Effects of the chelyabinsk meteoroid entry at the ionosphere. Int. J. Electron. Appl. Res. 2014, 1, 39–60. [Google Scholar]
- Ding, F.; Mao, T.; Hu, L.; Ning, B.; Wang, Y. GPS network observation of traveling ionospheric disturbances following the Chelyabinsk meteorite blast. Ann. Geophys. 2016, 34, 1045–1051. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.-M.; Komjathy, A.; Langley, R.B.; Vergados, P.; Butala, M.D.; Mannucci, A.J. The 2013 Chelyabinsk meteor ionospheric impact studied using GPS measurements. Radio Ence 2014, 49, 341–350. [Google Scholar] [CrossRef]
- Perevalova, N.P.; Shestakov, N.V.; Voeykov, S.V.; Takahashi, H.; Guojie, M. Ionospheric disturbances in the vicinity of the Chelyabinsk meteoroid explosive disruption as inferred from dense GPS observations. Geophys. Res. Lett. 2015, 4, 6535–6543. [Google Scholar] [CrossRef]
- Berngardt, O.I.; Perevalova, N.P.; Dobrynina, A.A.; Kutelev, K.A. Toward the azimuthal characteristics of ionospheric and seismic effects of “chelyabinsk” meteorite fall according to the data from coherent radar, gps, and seismic networks. J. Geophys. Res. Space Phys. 2015, 120, 10754–10771. [Google Scholar] [CrossRef] [Green Version]
- Unglaub, C.; Jacobi, C.; Schmidtke, G.; Nikutowski, B.; Brunner, R. EUV-TEC proxy to describe ionospheric variability using satellite-borne solar EUV measurements: First results. Adv. Space Res. 2011, 47, 1578–1584. [Google Scholar] [CrossRef]
- Pedatella, N.M.; Lei, J.; Thayer, J.P.; Forbes, J.M. Ionosphere response to recurrent geomagnetic activity: Local time dependency. J. Geophys. Res. Space Phys. 2010, 115. [Google Scholar] [CrossRef]
- Afraimovich, E.L.; Kosogorov, E.A.; Perevalova, N.P.; Plotnikov, A.V. The use of GPS-arrays in detecting shock-acoustic waves generated during rocket launchings. J. Atmos. Sol. Terr. Phys. 2000, 63, 1941–1957. [Google Scholar] [CrossRef] [Green Version]
- Haiyan, Y.; Xuhai, Y.; Zhe, Z.; Kunjuan, Z. High-Precision Ionosphere Monitoring Using Continuous Measurements from BDS GEO Satellites. Sensors 2018, 18, 714. [Google Scholar]
- Torrence, C.G.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Montes, R.; Pérez-Enríquez, R.; Araujo-Pradere, E.A.; Cruz-Abeyro, J.A.L. Fractal and wavelet analysis evaluation of the mid latitude ionospheric disturbances associated with major geomagnetic storms. Adv. Space Res. 2015, 55, 586–596. [Google Scholar] [CrossRef]
- Komjathy, A.; Galvan, D.A.; Stephens, P.; Butala, M.D.; Akopian, V.; Wilson, B. Detecting ionospheric TEC perturbations caused by natural hazards using a global network of GPS receivers: The Tohoku case study. Earth Planets Space 2012, 64, 1287–1294. [Google Scholar] [CrossRef] [Green Version]
- Karpov, I.V.; Kshevetsky, S.P.; Borchevkina, O.P.; Radievsky, A.V.; Karpov, A.I. Disturbances of the upper atmosphere and ionosphere caused by acoustic-gravity wave sources in the lower atmosphere. Russ. J. Phys. Chem. B 2016, 10, 127–132. [Google Scholar] [CrossRef]
- Zhao, Z.; Zeng, Z.X.; Guo, Q.; Li, Z.H. Signal analysis on infrasound and gravity waves received before and after the Lushan earthquake. Earth Sci. Front. 2013, 20, 36–41. [Google Scholar]
- Afraimovich, E.L.; Perevalova, N.P.; Plotnikov, A.V.; Uralov, A.M. The shock-acoustic waves generated by earthquakes. Ann. Geophys. 2001, 19, 395–409. [Google Scholar] [CrossRef] [Green Version]
- Chernogor, L.F.; Barabash, V.V. Ionosphere disturbances accompanying the flight of the Chelyabinsk body. Kinemat. Phys. Celest. Bodies 2014, 30, 126–136. [Google Scholar] [CrossRef]
Track Number | IPP Location | Distance between TID and Explosion Point | Elevation Angle | Azimuth Angle | Disturbance Magnitude | Average Horizontal Propagation Velocity |
---|---|---|---|---|---|---|
AC60-PRN02 | 51.61° N/ 171.10° E | 595.79 km | 44.12 | 188.70 | 0.13 TECU | 270.94 m/s |
AC60-PRN05 | 53.66° N/ 170.50° E | 380.86 km | 43.82 | 199.30 | 0.16 TECU | 248.33 m/s |
AC60-PRN07 | 52.42° N/ 176.13° E | 575.27 km | 60.08 | 152.70 | 0.14 TECU | 238.13 m/s |
AC60-PRN09 | 53.62° N/ 178.50° E | 532.47 km | 45.53 | 130.80 | 0.13 TECU | 434.02 m/s |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Yao, Y.; Shan, L. Analysis of Ionospheric Disturbances Caused by the 2018 Bering Sea Meteor Explosion Based on GPS Observations. Sensors 2020, 20, 3201. https://doi.org/10.3390/s20113201
Luo Y, Yao Y, Shan L. Analysis of Ionospheric Disturbances Caused by the 2018 Bering Sea Meteor Explosion Based on GPS Observations. Sensors. 2020; 20(11):3201. https://doi.org/10.3390/s20113201
Chicago/Turabian StyleLuo, Yiyong, Yibin Yao, and Lulu Shan. 2020. "Analysis of Ionospheric Disturbances Caused by the 2018 Bering Sea Meteor Explosion Based on GPS Observations" Sensors 20, no. 11: 3201. https://doi.org/10.3390/s20113201
APA StyleLuo, Y., Yao, Y., & Shan, L. (2020). Analysis of Ionospheric Disturbances Caused by the 2018 Bering Sea Meteor Explosion Based on GPS Observations. Sensors, 20(11), 3201. https://doi.org/10.3390/s20113201