An Analytical Framework for the IEEE 802.15.4 MAC Layer Protocol under Periodic Traffic
Abstract
:1. Introduction
- (1)
- Different from assuming single CCA mode (SS mode) as previous works do, this paper proposes a Markov chain-based channel state model which supports the analysis of networks adopting double CCA mode (DS mode). In the proposed channel model, we pay more attention to the operation of the 1st CCA (CCA1). The relationship between the occurrence of CCA1 in a channel and its successful probability is formulated.
- (2)
- Contrary to approximating the distribution of backoff duration with continuous probability analysis, we consider the duration of backoff period as a discrete time signal and analyze it with signal processing approach. With the assistance of a discrete Fourier transform (DFT), the distribution of a single node’s backoff duration is obtained. Based on the distribution of a single node’s backoff duration, single node’s CCA1 performing probability and its successful probability are formulated. Besides, the statistics of single node’s load status are also determined.
- (3)
- Combining the analysis of channel state and node state, an analytical framework of IEEE 802.15.4 MAC layer protocol is proposed. With a given network scale, data packet’s inter-arrival time and channel access parameters, the performance statistics of a single node and the whole network can be estimated.
- (4)
- With simple modifications, the proposed analytical framework can be modified to be compatible with SS mode. By comparing DS mode and SS mode in different network scenarios, the paper demonstrates applicable network scenarios of the two modes, respectively.
- (5)
- By approximating the distribution of one data packet’s backoff duration as a normal distribution, we come up with a method of estimating data packet’s average transmission latency in networks with given configurations. Simulation results show that the proposed method provides a conservative and reliable estimation on network’s average transmission latency and can be used to judge whether or not a given network’s average transmission latency is bounded by packet inter-arrival time.
2. Related Works
3. The Slotted CSMA-CA Protocol
4. Analytical Framework
4.1. Channel State Analysis
4.2. Node State Analysis
4.2.1. The Distribution of Backoff Period
4.2.2. The Probability of Saturated Load Status
4.2.3. The Analysis of Single Node’s CCA1 Operation
4.3. Channel-Node Combined Analysis
4.3.1. The Probability of CCA1 Operation
4.3.2. The Probability of Collision
5. Performance Metrics
5.1. Throughput Analysis
5.2. Energy Consumption Analysis
6. Simulation and Numerical Results
6.1. Simulation Setup
6.2. Model Validation
6.3. Single CCA vs. Double CCA
6.4. An Estimation of Average Transmission Latency
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gungor, V.C.; Hancke, G.P. Industrial wireless sensor networks: Challenges, design principles, and technical approaches. IEEE Trans. Ind. Electron. 2009, 56, 4258–4265. [Google Scholar] [CrossRef] [Green Version]
- Wireless Medium Access Control and Physical Layer Specifications for Low-Rate Wireless Personal Area Networks. IEEE Stud. 802.15.4. 2006. Available online: http://www.ieee802.org/15/pub/TG4.html (accessed on 11 June 2020).
- Pollin, S.; Ergen, M.; Ergen, S.C.; Bougard, B.; Van der Perre, L.; Moerman, I.; Bahai, A.; Varaiya, P.; Catthoor, F. Performance analysis of slotted carrier sense IEEE 802.15. 4 medium access layer. IEEE Trans. Wirel. Commun. 2008, 7, 3359–3371. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Tang, Z.; Chen, H.-H.; Zhang, Q. An accurate and scalable analytical model for IEEE 802.15. 4 slotted CSMA/CA networks. Trans. Wirel. Commun. 2009, 8, 440–448. [Google Scholar] [CrossRef]
- Ling, X.; Cheng, Y.; Mark, J.W.; Shen, X. A renewal theory based analytical model for the contention access period of IEEE 802.15. 4 MAC. IEEE Trans. Wirel. Commun. 2008, 7, 2340–2349. [Google Scholar] [CrossRef]
- Cheng, Y.; Ling, X.; Zhuang, W. A protocol-independent approach for analyzing the optimal operation point of CSMA/CA protocols. In Proceedings of the IEEE INFOCOM, Rio de Janeiro, Brazil, 20–25 April 2009; pp. 2070–2078. [Google Scholar]
- Cao, X.; Chen, J.; Sun, Y.; Shen, X. Maximum throughput of IEEE 802.15. 4 enabled wireless sensor networks. In Proceedings of the 2010 IEEE Global Telecommunications Conference GLOBECOM, Miami, FL, USA, 6–10 December 2010; pp. 1–5. [Google Scholar]
- Ramachandran, I.; Das, A.K.; Roy, S. Analysis of the contention access period of IEEE 802.15. 4 MAC. ACM Trans. Sens. Netw. 2007, 3, 4-es. [Google Scholar] [CrossRef] [Green Version]
- Jung, C.Y.; Hwang, H.Y.; Sung, D.K.; Hwang, G.U. Enhanced Markov chain model and throughput analysis of the slotted CSMA/CA for IEEE 802.15. 4 under unsaturated traffic conditions. IEEE Trans. Veh. Technol. 2008, 58, 473–478. [Google Scholar] [CrossRef] [Green Version]
- Park, P.; Di Marco, P.; Soldati, P.; Fischione, C.; Johansson, K.H. A generalized Markov chain model for effective analysis of slotted IEEE 802.15. 4. In Proceedings of the 2009 IEEE 6th International Conference on Mobile Adhoc and Sensor Systems, Macau, China, 12–15 October 2009; pp. 130–139. [Google Scholar]
- Lu, K.; Wang, J.; Wu, D.; Fang, Y. Performance of a burst-frame-based CSMA/CA protocol: Analysis and enhancement. Wirel. Netw. 2009, 15, 87–98. [Google Scholar] [CrossRef]
- Kuzlu, M.; Pipattanasomporn, M.; Rahman, S. Communication network requirements for major smart grid applications in HAN, NAN and WAN. Comput. Netw. 2014, 67, 74–88. [Google Scholar] [CrossRef]
- Ingelrest, F.; Barrenetxea, G.; Schaefer, G.; Vetterli, M.; Couach, O.; Parlange, M.B. SensorScope: Application-specific sensor network for environmental monitoring. ACM Trans. Sens. Netw. 2010, 6, 17. [Google Scholar] [CrossRef]
- Bianchi, G. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J. Sel. Area Commun. 2000, 18, 535–547. [Google Scholar] [CrossRef]
- Shu, F.; Sakurai, T. A new analytical model for the IEEE 802.15. 4 CSMA-CA protocol. Comput. Netw. 2011, 55, 2576–2591. [Google Scholar] [CrossRef]
- Cao, X.; Cheng, P.; Chen, J.; Sun, Y. An online optimization approach for control and communication codesign in networked cyber-physical systems. IEEE Trans. Ind. Inf. 2012, 9, 439–450. [Google Scholar] [CrossRef]
- Cao, X.; Chen, J.; Cheng, Y.; Shen, X.S.; Sun, Y. An analytical MAC model for IEEE 802.15. 4 enabled wireless networks with periodic traffic. IEEE Trans. Wirel. Commun. 2015, 14, 5261–5273. [Google Scholar] [CrossRef]
- Ashrafuzzaman, K.; Kwak, K.S. On the performance analysis of the contention access period of IEEE 802.15. 4 MAC. IEEE Commun. Lett. 2011, 15, 986–988. [Google Scholar] [CrossRef]
- Shu, F.; Sakurai, T.; Zukerman, M.; Vu, H.L. Packet loss analysis of the IEEE 802.15. 4 MAC without acknowledgements. IEEE Commun. Lett. 2007, 11, 79–81. [Google Scholar] [CrossRef]
- Li, X.; Hunter, D.K. Four-dimensional Markov chain model of single-hop data aggregation with IEEE 802.15. 4 in wireless sensor networks. Wirel. Netw. 2012, 18, 469–479. [Google Scholar] [CrossRef] [Green Version]
- Oppenheim, A.V.; Baran, T.; Massachusetts Institute of Technology, Cambridge, MA, USA. Personal communication, 1999.
- Kirsche, M.; Schnurbusch, M. A New IEEE 802.15.4 Simulation Model for OMNeT++/INET. 2015. Available online: https://arxiv.org/pdf/1409.1177.pdf (accessed on 11 June 2020).
- Kauer, F.; Köstler, M.; Turau, V. openDSME: Reliable time-slotted multi-hop communication for IEEE 802.15. 4. In Recent Advances in Network Simulation; Springer: Berlin, Germany, 2019; pp. 451–467. [Google Scholar]
- Amin, Y.M.; Abdel-Hamid, A.T. A Simulation Model of IEEE 802.15. 4 GTS Mechanism and GTS Attacks in OMNeT++/MiXiM+ NETA. Comput Inf. Sci. 2018, 11, 78–89. [Google Scholar]
- Feller, W. An Introduction to Probability Theory and its Applications; John Wiley & Sons: Chichester, UK, 2008; Volume 2. [Google Scholar]
- Potuschak, H.; Müller, W.G. More on the distribution of the sum of uniform random variables. St. Pap. 2009, 50, 177–183. [Google Scholar] [CrossRef]
Notation | Values | Description |
---|---|---|
M | Default: 2 | Number of sensor nodes in network |
K | Default: 1536 | Number of slots in one contention period |
T | Default: 250 | The inter-arrival time of data packet in slots |
L | Default: 8 | The length of one data packet in slots |
macMaxCSMABackoffs | Range: 0–5 Default: 4 | Maximum number of backoff stages |
macMaxBE | Range: 3–8 Default: 5 | Maximum backoff window exponent |
macMinBE | Range: 0–7 Default: 3 | Minimum backoff window exponent permeability |
NB | Range: 0–macMaxCSMABackoffs | Number of backoff times |
BE | Range: macMinBE–macMaxBE | Backoff exponent |
CW | Default: 2 | The length of Contention Window |
Modes | Energy Consumption |
---|---|
Transmitting | 24.6 mA |
Receiving | 17.2 mA |
Idle | 1.617 mA |
Sleep | 0.297 mA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yang, W.; Han, R.; Xu, L.; Zhao, H. An Analytical Framework for the IEEE 802.15.4 MAC Layer Protocol under Periodic Traffic. Sensors 2020, 20, 3350. https://doi.org/10.3390/s20123350
Wang Y, Yang W, Han R, Xu L, Zhao H. An Analytical Framework for the IEEE 802.15.4 MAC Layer Protocol under Periodic Traffic. Sensors. 2020; 20(12):3350. https://doi.org/10.3390/s20123350
Chicago/Turabian StyleWang, Yipeng, Wei Yang, Ruisong Han, Linsen Xu, and Haojiang Zhao. 2020. "An Analytical Framework for the IEEE 802.15.4 MAC Layer Protocol under Periodic Traffic" Sensors 20, no. 12: 3350. https://doi.org/10.3390/s20123350
APA StyleWang, Y., Yang, W., Han, R., Xu, L., & Zhao, H. (2020). An Analytical Framework for the IEEE 802.15.4 MAC Layer Protocol under Periodic Traffic. Sensors, 20(12), 3350. https://doi.org/10.3390/s20123350