Simultaneous Measurement of 6DOF Motion Errors of Linear Guides of CNC Machine Tools Using Different Modes
Abstract
:1. Introduction
2. A Simultaneous Measurement System and the Principle of a 6 DOF Motion Error for a Linear Axis
3. Measurement Models in Two Measurement Modes
3.1. Measurement Mode 1
3.2. Measurement Mode 2
4. Experimental Results and Analysis
4.1. Performance of 6DOF Error Measurement System
4.2. Analysis of the Straightness Error Measurement Models
4.3. Comparative Experiment between Two Measurement Modes
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schwenke, H.; Knapp, W.; Haitjema, H.; Weckenmann, A.; Schmitt, R.; Delbressine, F. Geometric error measurement and compensation of machines—An update. CIRP Ann. 2008, 57, 660–675. [Google Scholar] [CrossRef]
- Eskandari, S.; Arezoo, B.; Abdullah, A. Positional, geometrical, and thermal errors compensation by tool path modification using three methods of regression, neural networks, and fuzzy logic. Int. J. Adv. Manuf. Technol. 2012, 65, 1635–1649. [Google Scholar] [CrossRef]
- Okafor, A.C.; Ertekin, Y.M. Vertical machining center accuracy characterization using laser interferometer, part one: Linear positional errors. J. Mater. Process. Technol. 2000, 105, 394–406. [Google Scholar] [CrossRef]
- Okafor, A.C.; Ertekin, Y.M. Vertical machining center accuracy characterization using laser interferometer, part two: Angular errors. J. Mater. Process. Technol. 2000, 105, 407–420. [Google Scholar] [CrossRef]
- Gillmer, S.R.; Smith, R.C.G.; Woody, S.C.; Ellis, J. Compact fiber-coupled three degree-of-freedom displacement interferometry for nanopositioning stage calibration. Meas. Sci. Technol. 2014, 25, 075205. [Google Scholar] [CrossRef]
- Molnar, G.; Strube, S.; Köchert, P.; Danzebrink, H.-U.; Flügge, J. Simultaneous multiple degrees of freedom (DoF) measurement system. Meas. Sci. Technol. 2016, 27, 084011. [Google Scholar] [CrossRef]
- Huang, Y.; Fan, K.-C.; Sun, W.; Liu, S. Low cost, compact 4-DOF measurement system with active compensation of beam angular drift error. Opt. Express 2018, 26, 17185–17198. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Lin, W.-C.; Liu, C.-S. Design and experimental verification of novel six-degree-of freedom geometric error measurement system for linear stage. Opt. Lasers Eng. 2017, 92, 94–104. [Google Scholar] [CrossRef]
- Lee, S.W.; Mayor, R.; Ni, J. Development of a Six-Degree-of-Freedom Geometric Error Measurement System for a Meso-Scale Machine Tool. J. Manuf. Sci. Eng. 2005, 127, 857–865. [Google Scholar] [CrossRef]
- Lee, C.; Kim, G.H.; Lee, S.-K. Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultraprecision linear stage. Meas. Sci. Technol. 2011, 22, 105901. [Google Scholar] [CrossRef]
- Gao, W.; Arai, Y.; Shibuya, A.; Kiyono, S.; Park, C.H. Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage. Precis. Eng. 2006, 30, 96–103. [Google Scholar] [CrossRef]
- Liu, C.H.; Jywe, W.-Y.; Hsu, C.-C.; Hsu, T.-H. Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for linear stage. Rev. Sci. Instrum. 2005, 76, 055110. [Google Scholar] [CrossRef]
- Kim, J.-W.; Kang, C.-S.; Kim, J.-A.; Eom, T.; Cho, M.; Kong, H.J. A compact system for simultaneous measurement of linear and angular displacements of nano-stages. Opt. Express 2007, 15, 15759–15766. [Google Scholar] [CrossRef]
- Chen, B.; Xu, B.; Yan, L.; Zhang, E.; Liu, Y. Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters. Opt. Express 2015, 23, 9052–9073. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.-C.; Chen, M.; Huang, W. A six-degree-of-freedom measurement system for the motion accuracy of linear stages. Int. J. Mach. Tools Manuf. 1998, 38, 155–164. [Google Scholar] [CrossRef]
- Liu, C.-S.; Lai, J.-J.; Luo, Y.-T. Design of a Measurement System for Six-Degree-of-Freedom Geometric Errors of a Linear Guide of a Machine Tool. Sensors 2018, 19, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.-S.; Pu, Y.-F.; Chen, Y.-T.; Luo, Y.-T. Design of a Measurement System for Simultaneously Measuring Six-Degree-Of-Freedom Geometric Errors of a Long Linear Stage. Sensors 2018, 18, 3875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, X.; Gillmer, S.R.; Woody, S.C.; Ellis, J. Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology. Rev. Sci. Instrum. 2016, 87, 065109. [Google Scholar] [CrossRef] [Green Version]
- Renishaw plc. XM-60. Available online: https://www.renishaw.com/en/xm-60-and-xm-600-multi-axis-calibrator--39258 (accessed on 27 April 2020).
- Automated Precision Inc. XD Laser. Available online: https://www.apisensor.com/products/mth/xd-laser (accessed on 27 April 2020).
- Barka, N.; El Ouafi, A. Development of New Measurement System of Errors in the Multiaxial Machine Tool for an Active Compensation. J. Qual. Reliab. Eng. 2016, 2016, 1–9. [Google Scholar] [CrossRef]
- Zheng, F.; Feng, Q.; Zhang, B.; Li, J.; Li, F. A Method for Simultaneously Measuring 6DOF Geometric Motion Errors of Linear and Rotary Axes Using Lasers. Sensors 2019, 19, 1764. [Google Scholar] [CrossRef] [Green Version]
- Cui, C.; Feng, Q.; Zhang, B.; Zhao, Y. System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser. Opt. Express 2016, 24, 6735–6748. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q. Measurement system and model for simultaneously measuring 6DOF geometric errors. Opt. Express 2017, 25, 20993. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, Q.; Zhang, B.; Cui, C. Influence of beam radii on a common-path compensation method for laser beam drifts in laser collimation systems. Meas. Sci. Technol. 2016, 27, 084013. [Google Scholar] [CrossRef]
- Zheng, F.; Feng, Q.; Zhang, B.; Li, J.; Zhao, Y. Effect of detector installation error on the measurement accuracy of multi-degree of freedom geometric errors of a linear axis. Meas. Sci. Technol. 2020. [Google Scholar] [CrossRef]
CNC Machine Type | Measurement Mode 1 | Measurement Mode 2 |
---|---|---|
Type TXYZ | Axis X, Y, Z | None |
Type XTYZ | Axis Y, Z | Axis X |
Type XYTZ | Axis Z | Axis X, Y |
Type XYZT | None | Axis X, Y, Z |
Parameter | Stability Standard Deviation | Repeatability Error | Resolution | Measurement Range |
---|---|---|---|---|
Positioning error | 5 m | |||
Straightness error (X) | ||||
Straightness error (Y) | ||||
Pitch | ||||
Yaw | ||||
Roll |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, P.; Zhang, B.; Feng, Q.; Zheng, F. Simultaneous Measurement of 6DOF Motion Errors of Linear Guides of CNC Machine Tools Using Different Modes. Sensors 2020, 20, 3439. https://doi.org/10.3390/s20123439
Jia P, Zhang B, Feng Q, Zheng F. Simultaneous Measurement of 6DOF Motion Errors of Linear Guides of CNC Machine Tools Using Different Modes. Sensors. 2020; 20(12):3439. https://doi.org/10.3390/s20123439
Chicago/Turabian StyleJia, Peizhi, Bin Zhang, Qibo Feng, and Fajia Zheng. 2020. "Simultaneous Measurement of 6DOF Motion Errors of Linear Guides of CNC Machine Tools Using Different Modes" Sensors 20, no. 12: 3439. https://doi.org/10.3390/s20123439
APA StyleJia, P., Zhang, B., Feng, Q., & Zheng, F. (2020). Simultaneous Measurement of 6DOF Motion Errors of Linear Guides of CNC Machine Tools Using Different Modes. Sensors, 20(12), 3439. https://doi.org/10.3390/s20123439