Mechanical Properties and Fracture Behavior of Crumb Rubber Basalt Fiber Concrete Based on Acoustic Emission Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pre-Modification of Crumb Rubber
2.3. Orthogonal Experimental Design
2.4. Preparation of CRBFC
2.5. Test Methods for Mechanical Properties
2.6. AE Method
3. Results and Analysis
3.1. Orthogonal Test
3.1.1. Compressive Strength
3.1.2. Flexural Strength
3.1.3. AE Parameters
3.2. Fracture Warning and Fracture Mode
3.2.1. Analysis of Fracture Warning
3.2.2. Analysis of Fracture Mode
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xie, J.H.; Fang, C.; Lu, Z.Y.; Li, Z.J.; Li, L.J. Effects of the addition of silica fume and rubber particles on the compressive behaviour of recycled aggregate concrete with steel fibres. J. Clean. Prod. 2018, 197, 656–667. [Google Scholar] [CrossRef]
- Facheco-Torgal, F.; Ding, Y.N.; Jalali, S. Properties and durability of concrete containing polymeric wastes (tyre rubber and polyethylene terephthalate bottles): An overview. J. Clean. Prod. 2012, 30, 714–724. [Google Scholar]
- Gheni, A.A.; Abdelkarim, O.I.; Abdulazeez, M.M.; EIGawady, M.A. Texture and design of green chip seal using recycled crumb rubber aggregate. J. Clean. Prod. 2017, 166, 1084–1101. [Google Scholar] [CrossRef]
- Adhikari, B.; De, D.; Maiti, S. Reclamation and recycling of waste rubber. Prog. Polym. Sci. 2000, 25, 909–948. [Google Scholar] [CrossRef]
- Thomas, B.S.; Gupta, R.C.; Panicker, V.J. Recycling of waste tire rubber as aggregate in concrete: Durability-related performance. J. Clean. Prod. 2016, 112, 504–513. [Google Scholar] [CrossRef]
- Ozbay, E.; Lachemi, M.; Sevim, U.K. Compressive strength, abrasion resistance and energy absorption capacity of rubberized concretes with and without slag. Mater. Struct. 2011, 44, 1297–1307. [Google Scholar] [CrossRef]
- Dong, Q.; Huang, B.S.; Shu, X. Rubber modified concrete improved by chemically active coating and silane coupling agent. Constr. Build. Mater. 2013, 48, 116–123. [Google Scholar] [CrossRef]
- Richardson, A.; Coventry, K.; Edmondson, V.; Dias, E. Crumb rubber used in concrete to provide freezeethaw protection (optimal particle size). J. Clean. Prod. 2016, 112, 599–606. [Google Scholar] [CrossRef]
- Oikonomou, N.; Mavridou, S. Improvement of chloride ion penetration resistance in cement mortars modified with rubber from worn automobile tires. Cem. Concr. Compos. 2009, 31, 403–407. [Google Scholar] [CrossRef]
- Zheng, L.; Huo, X.S.; Yuan, Y. Strength, modulus of elasticity, and brittleness index of rubberized concrete. J. Mater. Civ. Eng. 2008, 20, 692–699. [Google Scholar] [CrossRef]
- Jokar, F.; Khorram, M.; Karimi, G.; Hataf, N. Experimental investigation of mechanical properties of crumbed rubber concrete containing natural zeolite. Constr. Build. Mater. 2019, 208, 651–658. [Google Scholar] [CrossRef]
- Taha, M.M.R.; Asce, M.; El-Dieb, A.S.; El-Wahab, M.A.A.; Abdel-Hameed, M.E. Mechanical, fracture, and microstructural investigations of rubber concrete. J. Mater. Civ. Eng. 2008, 20, 640–649. [Google Scholar] [CrossRef]
- Lv, J.; Zhou, T.H.; Du, Q.; Wu, H.H. Effects of rubber particles on mechanical properties of lightweight aggregate concrete. Constr. Build. Mater. 2015, 91, 145–149. [Google Scholar] [CrossRef]
- Ghazy, A.; Bassuoni, M.T.; Maguire, E.; O’Loan, M. Properties of fiber-reinforced mortars incorporating nano-silica. Fibers 2016, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Al-Masoodi, A.H.H.; Kawan, A.; Kasmuri, M.; Hamid, R.; Khan, M.N.M. Static and dynamic properties of concrete with different types and shapes of fibrous reinforcement. Constr. Build. Mater. 2016, 104, 247–262. [Google Scholar] [CrossRef]
- Nguyen, T.-H.; Toumi, A.; Turatsinze, A. Mechanical properties of steel fibre reinforced and rubberised cement-based mortars. Mater. Des. 2010, 31, 641–647. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y. Experimental study on performance of rubber particle and steel fiber composite toughening concrete. Constr. Build. Mater. 2017, 146, 267–275. [Google Scholar] [CrossRef]
- Sim, J.; Park, C.; Moon, D.Y. Characteristics of basalt fiber as a strengthening material for concrete structures. Compos. Part B Eng. 2005, 36, 504–512. [Google Scholar] [CrossRef]
- Katkhuda, H.; Shatarat, N. Improving the mechanical properties of recycled concrete aggregate using chopped basalt fibers and acid treatment. Constr. Build. Mater. 2017, 140, 328–335. [Google Scholar] [CrossRef]
- Rybin, V.A.; Utkin, A.V.; Baklanova, N.I. Alkali resistance, microstructural and mechanical performance of zirconia-coated basalt fibers. Cem. Concr. Res. 2013, 53, 1–8. [Google Scholar] [CrossRef]
- Branston, J.; Das, S.; Kenno, S.Y.; Taylor, C. Mechanical behaviour of basalt fibre reinforced concrete. Constr. Build. Mater. 2016, 124, 878–886. [Google Scholar] [CrossRef]
- Algin, Z.; Ozen, M. The properties of chopped basalt fibre reinforced self-compacting concrete. Constr. Build. Mater. 2018, 186, 678–685. [Google Scholar] [CrossRef]
- Niu, D.; Su, L.; Luo, Y.; Huang, D.; Luo, D. Experimental study on mechanical properties and durability of basalt fiber reinforced coral aggregate concrete. Constr. Build. Mater. 2020, 237, 117628. [Google Scholar] [CrossRef]
- Ohno, K.; Ohtsu, M. Crack classification in concrete based on acoustic emission. Constr. Build. Mater. 2010, 24, 2339–2346. [Google Scholar] [CrossRef]
- Sagar, R.V.; Prasad, B.K.R. An experimental study on acoustic emission energy as a quantitative measure of size independent specific fracture energy of concrete beams. Constr. Build. Mater. 2011, 25, 2349–2357. [Google Scholar] [CrossRef]
- Carpinteri, A.; Xu, J.; Lacidogna, G.; Manuello, A. Reliable onset time determination and source location of acoustic emissions in concrete structures. Cem. Concr. Compos. 2012, 34, 529–537. [Google Scholar]
- Mpalaskas, A.C.; Thanasia, O.V.; Matikas, T.E.; Aggelis, D.G. Mechanical and fracture behavior of cement-based materials characterized by combined elastic wave approaches. Constr. Build. Mater. 2014, 50, 649–656. [Google Scholar] [CrossRef]
- Shiotani, T.; Oshima, Y.; Goto, M.; Momoki, S. Temporal and spatial evaluation of grout failure process with PC cable breakage by means of acoustic emission. Constr. Build. Mater. 2013, 48, 1286–1292. [Google Scholar]
- Rouchier, S.; Foray, G.; Godin, N.; Woloszyn, M.; Roux, J.J. Damage monitoring in fibre reinforced mortar by combined digital image correlation and acoustic emission. Constr. Build. Mater. 2013, 38, 371–380. [Google Scholar]
- Sagasta, F.; Benavent-Climent, A.; Roldán, A.; Gallego, A. Correlation of plastic strain energy and acoustic emission energy in reinforced concrete structures. Appl. Sci. 2016, 6, 84. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Hu, S.; Lu, J.; Wei, C. Acoustic emission properties of concrete on dynamic tensile test. Constr. Build. Mater. 2016, 114, 66–75. [Google Scholar]
- Shiotani, T.; Ohtsu, M.; Ikeda, K. Detection and evaluation of AE waves due to rock deformation. Constr. Build. Mater. 2001, 15, 235–246. [Google Scholar] [CrossRef]
- Han, Q.; Yang, G.; Xu, J.; Fu, Z.; Lacidogna, G.; Carponteri, A. Acoustic emission data analyses based on crumb rubber concrete beam bending tests. Eng. Fract. Mech. 2019, 210, 189–202. [Google Scholar] [CrossRef]
- Chen, C.; Fan, X.; Chen, X. Experimental investigation of concrete fracture behavior with different loading rates based on acoustic emission. Constr. Build. Mater. 2020, 237, 117472. [Google Scholar] [CrossRef]
- Abouhussien, A.A.; Hassan, A.A.A. Classification of damage in self-consolidating rubberized concrete using acoustic emission intensity analysis. Ultrasonics 2020, 100, 105999. [Google Scholar] [CrossRef] [PubMed]
- Xargay, H.; Folino, P.; Nuñez, N.; Gómez, M.; Caggiano, A.; Martinelli, E. Acoustic emission behavior of thermally damaged self-compacting high strength fiber reinforced concrete. Constr. Build. Mater. 2018, 187, 519–530. [Google Scholar] [CrossRef]
- Aslani, F. Mechanical properties of waste tire rubber concrete. J. Mater. Civ. Eng. 2016, 28, 4015152. [Google Scholar] [CrossRef]
- Ganjian, E.; Khorami, M.; Maghsoudi, A.A. Scrap-tyre-rubber replacement for aggregate and filler in concrete. Constr. Build. Mater. 2009, 23, 1828–1836. [Google Scholar] [CrossRef]
- Guo, S.; Dai, Q.; Si, R.; Sun, X.; Lu, C. Evaluation of properties and performance of rubber-modified concrete for recycling of waste scrap tire. J. Clean. Prod. 2017, 148, 681–689. [Google Scholar] [CrossRef]
- Si, R.; Wang, J.; Guo, S.; Dai, Q.; Han, S. Evaluation of laboratory performance of self-consolidating concrete with recycled tire rubber. J. Clean. Prod. 2018, 180, 823–831. [Google Scholar] [CrossRef]
- Wang, B.; Lin, R.; Liu, D.; Xu, J.; Feng, B. Investigation of the effect of humidity at both electrode on the performance of PEMFC using orthogonal test method. Int. J. Hydrog. Energy 2019, 44, 13737–13743. [Google Scholar] [CrossRef]
- Xu, Y.; Jin, R.; Hu, L.; Li, B.; Chen, W.; Shen, J.; Wu, P.; Fang, J. Studying the mix design and investigating the photocatalytic performance of pervious concrete containing TiO2-Soaked recycled aggregates. J. Clean. Prod. 2020, 248, 119281. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Construction of the People’s Republic of China. Standard for Test. Method of Mechanical Properties on Ordinary Concrete; China Architecture & Building Press: Beijing, China, 2002. (In Chinese) [Google Scholar]
- Ohtsu, M. Recommendations of RILEM Technical Committee 212-ACD: Acoustic emission and related NDE techniques for crack detection and damage evaluation in concrete: 3. Test method for classification of active cracks in concrete structures by acoustic emission. Mater. Struct. 2010, 43, 1187–1189. [Google Scholar]
- Aggelis, D.; Souliot, D.; Sapourudis, N.; Barkoula, N.; Paipetis, A.; Matikas, T. Acoustic emission characterization of the fracture process in fibre reinforced concrete. Constr. Build. Mater. 2011, 25, 4126–4131. [Google Scholar] [CrossRef]
- Soulioti, D.; Barkoula, N.; Paipetis, A.; Matikas, T.; Shiotani, T.; Aggeils, D. Acoustic emission behavior of steel fibre reinforced concrete under bending. Constr. Build. Mater. 2009, 23, 3532–3536. [Google Scholar] [CrossRef] [Green Version]
Density (kg/m3) | Specific Surface Area (m2/kg) | Setting Time (min) | Compressive Strength (MPa) | Flexural Strength (MPa) | |
---|---|---|---|---|---|
Initial Setting | Final Setting | ||||
3160 | 385 | 91 | 145 | 62.2 | 9.1 |
Material | Chemical Composition (%) | |||||
---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | |
Cement | 22.60 | 5.60 | 4.30 | 62.70 | 1.70 | 2.50 |
Type | Length (mm) | Diameter (μm) | Linear Density (tex) | Tensile Strength (MPa) | Elastic Modulus (GPa) | Breaking Strength (N/tex) | Elongation (%) |
---|---|---|---|---|---|---|---|
Basalt fiber | 22 | 23 | 2392 | 2836 | 62 | 0.69 | 3 |
Levels | Factors | ||
---|---|---|---|
Water–Binder Ratio | Basalt Fiber (kg/m3) | Crumb Rubber (%) | |
1 | 0.43 | 2 | 5 |
2 | 0.46 | 4 | 10 |
3 | 0.49 | 6 | 15 |
Test Number | Parameters | Result Value | |||
---|---|---|---|---|---|
Water–Binder Ratio | Basalt Fiber (kg/m3) | Crumb Rubber (%) | Error | ||
1 | 0.43(1) | 2(1) | 5(1) | 1 | y1 |
2 | 0.43(1) | 4(2) | 10(2) | 2 | y2 |
3 | 0.43(1) | 6(3) | 15(3) | 3 | y3 |
4 | 0.46(2) | 2(1) | 10(2) | 3 | y4 |
5 | 0.46(2) | 4(2) | 15(3) | 1 | y5 |
6 | 0.46(2) | 6(3) | 5(1) | 2 | y6 |
7 | 0.49(3) | 2(1) | 15(3) | 2 | y7 |
8 | 0.49(3) | 4(2) | 5(1) | 3 | y8 |
9 | 0.49(3) | 6(3) | 10(2) | 1 | y9 |
Mix ID | Water-Binder Ratio | Water (kg/m3) | Cement (kg/m3) | Fine Aggregate (kg/m3) | Coarse Aggregate (kg/m3) | Basalt Fiber (kg/m3) | Crumb Rubber (kg/m3) | Modifier |
---|---|---|---|---|---|---|---|---|
A1 | 0.43 | 180 | 418.60 | 563.78 | 1204.88 | 2 | 12.46 | NaOH |
A2 | 0.43 | 180 | 418.60 | 534.11 | 1204.88 | 4 | 24.92 | NaOH |
A3 | 0.43 | 180 | 418.60 | 504.43 | 1204.88 | 6 | 37.37 | NaOH |
A4 | 0.46 | 180 | 391.30 | 541.24 | 1220.97 | 2 | 25.25 | NaOH |
A5 | 0.46 | 180 | 391.30 | 511.17 | 1220.97 | 4 | 37.37 | NaOH |
A6 | 0.46 | 180 | 391.30 | 571.31 | 1220.97 | 6 | 12.62 | NaOH |
A7 | 0.49 | 180 | 367.35 | 517.08 | 1235.10 | 2 | 39.31 | NaOH |
A8 | 0.49 | 180 | 367.35 | 577.91 | 1235.10 | 4 | 12.77 | NaOH |
A9 | 0.49 | 180 | 367.35 | 547.50 | 1235.10 | 6 | 25.54 | NaOH |
B1 | 0.43 | 180 | 418.60 | 504.43 | 1204.88 | 6 | 37.37 | – |
C1 | 0.43 | 180 | 418.60 | 593.45 | 1204.88 | – | – | – |
C2 | 0.46 | 180 | 391.30 | 601.38 | 1220.97 | – | – | – |
C3 | 0.49 | 180 | 367.35 | 608.33 | 1235.10 | – | – | – |
Test | Test Number | Parameters | Compressive Strength (MPa) | Flexural Strength (MPa) | |||
---|---|---|---|---|---|---|---|
Water-Binder Ratio | Basalt Fiber (kg/m3) | Crumb Rubber (%) | Error | ||||
Test Group | A1 | 0.43 | 2 | 5 | 1 | 40.6 | 3.82 |
A2 | 0.43 | 4 | 10 | 2 | 39.8 | 3.79 | |
A3 | 0.43 | 6 | 15 | 3 | 33.7 | 3.37 | |
A4 | 0.46 | 2 | 10 | 3 | 43.4 | 4.16 | |
A5 | 0.46 | 4 | 15 | 1 | 37.4 | 3.87 | |
A6 | 0.46 | 6 | 5 | 2 | 38.9 | 3.25 | |
A7 | 0.49 | 2 | 15 | 2 | 39.5 | 3.98 | |
A8 | 0.49 | 4 | 5 | 3 | 38.1 | 3.40 | |
A9 | 0.49 | 6 | 10 | 1 | 38.3 | 3.56 | |
Control Group | B1 | 0.43 | 6 | 15 | – | 31.8 | 2.78 |
C1 | 0.43 | – | – | – | 29.6 | 2.94 | |
C2 | 0.46 | – | – | – | 31.5 | 3.02 | |
C3 | 0.49 | – | – | – | 31.1 | 2.81 |
Factor | Level | Range | ||
---|---|---|---|---|
1 | 2 | 3 | ||
Water–binder ratio | k1 = 38.03 | k2 = 39.90 | k3 = 38.63 | 1.87 |
Basalt fiber | k1 = 41.17 | k2 = 38.43 | k3 = 36.97 | 4.20 |
Crumb rubber | k1 = 39.20 | k2 = 40.50 | k3 = 36.87 | 3.63 |
Error | k1 = 38.77 | k2 = 39.40 | k3 = 38.40 | 1.00 |
Factor | SS | df | MS | F Value | F Critical Value | Significance |
---|---|---|---|---|---|---|
Water–binder ratio | 5.449 | 2 | 2.724 | 3.55 | F0.05(2,2) = 19.0 | less significant |
Basalt fiber | 27.262 | 2 | 13.631 | 17.75 | F0.1(2,2) = 9.0 | significant |
Crumb rubber | 20.336 | 2 | 10.168 | 14.24 | F0.25(2,2) = 3.0 | significant |
Error | 1.536 | 2 | 0.768 | – | – | – |
Factor | Level | Range | ||
---|---|---|---|---|
1 | 2 | 3 | ||
Water-binder ratio | k1 = 3.66 | k2 = 3.76 | k3 = 3.65 | 0.11 |
Basalt fiber | k1 = 3.99 | k2 = 3.69 | k3 = 3.39 | 0.60 |
Crumb rubber | k1 = 3.49 | k2 = 3.83 | k3 = 3.74 | 0.35 |
Error | k1 = 3.75 | k2 = 3.67 | k3 = 3.64 | 0.10 |
Factor | SS | df | MS | F Value | F Critical Value | Significance |
---|---|---|---|---|---|---|
Water-binder ratio | 0.022 | 2 | 0.011 | 1.32 | F0.05(2,2) = 19.0 | least significant |
Basalt fiber | 0.532 | 2 | 0.266 | 32.06 | F0.1(2,2) = 9.0 | most significant |
Crumb rubber | 0.192 | 2 | 0.096 | 11.56 | F0.25(2,2) = 3.0 | significant |
Error | 0.017 | 2 | 0.008 | – | – | – |
Factor | Level | Range | ||
---|---|---|---|---|
1 | 2 | 3 | ||
Water-binder ratio | k1 = 0.31 | k2 = 0.29 | k3 = 0.36 | 0.07 |
Basalt fiber | k1 = 0.22 | k2 = 0.32 | k3 = 0.41 | 0.19 |
Crumb rubber | k1 = 0.46 | k2 = 0.20 | k3 = 0.29 | 0.26 |
Error | k1 = 0.31 | k2 = 0.33 | k3 = 0.33 | 0.02 |
Factor | SS | df | MS | F Value | F Critical Value | Significance |
---|---|---|---|---|---|---|
Water-binder ratio | 0.007298 | 2 | 0.00365 | 10.26 | F0.05(2,2) = 19.0 | significant |
Basalt fiber | 0.056094 | 2 | 0.02805 | 78.97 | F0.1(2,2) = 9.0 | most significant |
Crumb rubber | 0.103780 | 2 | 0.05189 | 145.99 | F0.25(2,2) = 3.0 | most significant |
Error | 0.000711 | 2 | 0.00036 | – | – | – |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Li, W.; Luo, G.; Liu, S.; Lyu, X. Mechanical Properties and Fracture Behavior of Crumb Rubber Basalt Fiber Concrete Based on Acoustic Emission Technology. Sensors 2020, 20, 3513. https://doi.org/10.3390/s20123513
Liu H, Li W, Luo G, Liu S, Lyu X. Mechanical Properties and Fracture Behavior of Crumb Rubber Basalt Fiber Concrete Based on Acoustic Emission Technology. Sensors. 2020; 20(12):3513. https://doi.org/10.3390/s20123513
Chicago/Turabian StyleLiu, Hanbing, Wenjun Li, Guobao Luo, Shiqi Liu, and Xiang Lyu. 2020. "Mechanical Properties and Fracture Behavior of Crumb Rubber Basalt Fiber Concrete Based on Acoustic Emission Technology" Sensors 20, no. 12: 3513. https://doi.org/10.3390/s20123513
APA StyleLiu, H., Li, W., Luo, G., Liu, S., & Lyu, X. (2020). Mechanical Properties and Fracture Behavior of Crumb Rubber Basalt Fiber Concrete Based on Acoustic Emission Technology. Sensors, 20(12), 3513. https://doi.org/10.3390/s20123513