Testing System for the Mechanical Properties of Small-Scale Specimens Based on 3D Microscopic Digital Image Correlation
Abstract
:1. Introduction
2. System Specification
2.1. Micro Tensile Machine
2.2. Imaging System
2.2.1. Model of the Imaging Optical Path
2.2.2. Calibration Process
- Calibrate the imaging system by the weighted radial alignment constraint method and construct a non-parametric distortion model. The specific calibration steps can be found in detail in the ref. [34];
- Revise (u, v) according to the constructed distortion model and repeat step 1;
- If the number of iterations reaches the set value, terminate the iteration; otherwise repeat step 1 and 2. The parameter corresponding to the minimum reprojection error is output as the result.
2.3. Digital Image Correlation
2.3.1. 2D-DIC Method with ZNCC+IC-GN
2.3.2. 3D-DIC Method
2.4. Testing Progress
3. Effects of Shape Functions on the Matching Accuracy
3.1. Shape Function
3.2. Numerical Experiments
3.2.1. Rigid Body Translation and Rotation Experiments
3.2.2. Uniform and Non-Uniform Deformation Experiments
3.3. Discussion
4. Experiments
4.1. System Calibration
4.2. In-Plane Displacement Measurement
4.3. Uniaxial Tensile Experiment
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pineau, A.; Benzerga, A.A.; Pardoen, T. Failure of metals III, Fracture and fatigue of nanostructured metallic materials. Acta Mater. 2015, 107, 508–544. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.X.; Zhang, Y.W.; Jhon, M.H.; Gao, H.J.; Srolovitz, D.J. Nanowire Failure: Long = Brittle and Short = Ductile. Nano Lett. 2012, 12, 910–914. [Google Scholar] [CrossRef] [PubMed]
- Keller, C.; Hug, E.; Feaugas, X. Microstructural size effects on mechanical properties of high purity nickel. Int. J. Plasticity 2011, 27, 635–654. [Google Scholar] [CrossRef]
- Gianola, D.S.; Eberl, C. Micro- and Nanoscale Tensile Testing of Materials. Jom 2009, 69, 24–35. [Google Scholar] [CrossRef]
- Johansson, S.; Fitzpatrick, M.E. Errors in crack closure measurements caused by flexure test fixture support effects. Exp. Mech. 2001, 41, 47–51. [Google Scholar] [CrossRef]
- Kim, C.Y.; Song, J.H.; Lee, D.Y. Development of a fatigue testing system for thin films. Int. J. Fatigue 2008, 31, 736–742. [Google Scholar] [CrossRef]
- Espinosa, H.D.; Prorok, B.C.; Peng, B. Plasticity size effects in freestanding submicron polycrystalline FCC Films subjected to pure tension. J. Mech. Phys. Solids 2004, 52, 667–689. [Google Scholar] [CrossRef]
- Czichos, H.; Saito, T.; Smith, L. Springer Handbook of Materials Measurement Methods, 1st ed.; Springer: Berlin, Germany, 2006; pp. 296–299. [Google Scholar] [CrossRef]
- Huang, A.W.; Lu, C.H.; Wu, S.C.; Chen, T.C.; Vinci, R.P.; Brown, W.L. Viscoelastic mechanical properties measurement of thin Al and Al-Mg film using bulge testing. Thin Solid Films 2016, 618, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Shikida, M.; Yamasaki, M.; Yoshioka, T. Micro tensile-test system fabricated on a single crystal silicon chip. In Proceedings of the Ninth International Workshop on Micro Electromechanical Systems, San Diego, CA, USA, 11–15 February 1996; pp. 360–364. [Google Scholar]
- Haque, M.A.; Saif, M.T.A. Microscale materials testing using MEMS actuators. J. Microelectromech. Syst. 2001, 10, 146–152. [Google Scholar] [CrossRef]
- Torres, B.; Varona, F.B.; Peters, W.H.; Ranson, W.F. Study on Retrofitted Masonry Elements under Shear Using Digital Image Correlation. Sensors 2020, 20, 2122. [Google Scholar] [CrossRef] [Green Version]
- Pan, B.; Tian, L. Advanced video extensometer for non-contact, real-time, high-accuracy strain measurement. Opt. Express 2016, 24, 19082–19093. [Google Scholar] [CrossRef] [PubMed]
- Larsson, L.; Sjödahl, M.; Thuvander, F. Microscopic 3-D displacement field measurements using digital speckle photography. Opt. Lasers Eng. 2004, 41, 767–777. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, X.M.; Gan, J.Q.; Li, H.; Ge, P. Displacement measurement system for inverters using computer micro-vision. Opt. Lasers Eng. 2016, 81, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Sha, X.P.; Li, W.C.; Lv, X.Y.; Lv, J.T.; Li, Z.Q. Research on auto-focusing technology for micro vision system. Optik 2017, 142, 226–233. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Geng, B.L.; Long, C. Contour extraction of a laser stripe located on a microscope image from a stereo light microscope. Microsc. Res. Techniq. 2019, 82, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Z.; Li, D.S.; Liu, C. A stereoscopic imaging model and its calibration of micro stereovision for a 3D measurement. In Proceedings of the International Conference on Information Acquisition, Hong Kong, China, 27 June–3 July 2005. [Google Scholar] [CrossRef]
- Kim, N.H.; Bovik, A.C.; Aggrarwal, S.J. Shape description of biological objects via stereo light microscopy. IEEE Trans. Syst. Man Cybern. 1990, 20, 475–489. [Google Scholar] [CrossRef]
- Danuser, G.; Kubler, O. A calibration procedure for light-optical and scanning electron stereomicroscopy in micro- and nanorobotics. In Proceedings of the Three-Dimensional Microscopy: Image Acquisition and Processing II, San Jose, CA, USA, 23 March 1995; pp. 174–185. [Google Scholar] [CrossRef]
- Schreier, H.W.; Garcia, D.; Sutton, M.A. Advances in light microscope stereo vision. Exp. Mech. 2004, 44, 278–288. [Google Scholar] [CrossRef]
- Zhang, Z.Y. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. 2000, 22, 1330–1334. [Google Scholar] [CrossRef] [Green Version]
- Ren, M.D.; Liang, J.; Li, L.G.; Wei, B.; Wang, L.Z.; Tang, Z.Z. Accurate three-dimensional shape and deformation measurement at micro scale using digital image correlation. Rev. Sci. Instrum. 2015, 86, 133–218. [Google Scholar] [CrossRef]
- Tsai, R.Y. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. Int. J. Robot. Autom. 1987, 3, 323–344. [Google Scholar] [CrossRef] [Green Version]
- Pan, B.; Wang, B.; Lubiaeau, G.; Moussawi, A. Comparison of subset-based local and finite-element based global digital image correlation. Exp. Mech. 2015, 55, 887–901. [Google Scholar] [CrossRef]
- Pan, B.; Li, K. A fast digital image correlation method for deformation measurement. Opt. Lasers Eng. 2011, 49, 841–847. [Google Scholar] [CrossRef]
- Gao, Y.; Cheng, T.; Su, Y.; Xu, X.H.; Zhang, Y.; Zhang, Q.C. High-efficiency and high-accuracy digital image correlation for three-dimensional measurement. Opt. Lasers Eng. 2015, 65, 73–80. [Google Scholar] [CrossRef]
- Valle, V.; Hedan, S.; Cosenza, P.; Fauchille, A.L.; Berdjane, M. Digital image correlation development for the study of materials including multiple crossing cracks. Exp. Mech. 2015, 55, 379–391. [Google Scholar] [CrossRef]
- Yu, L.P.; Pan, B. The errors in digital image correlation due to overmatched shape functions. Meas. Sci. Technol. 2015, 26, 045202. [Google Scholar] [CrossRef]
- Wang, B.; Pan, B. Random errors in digital image correlation due to matched or overmatched shape functions. Exp. Mech. 2015, 55, 1717–1727. [Google Scholar] [CrossRef]
- Behrad, K.; Suraj, R.; Addis, K. Experimental determination of representative volume element (RVE) size in woven composites. Opt. Lasers Eng. 2017, 90, 59–71. [Google Scholar] [CrossRef]
- Rajan, V.P.; Rossol, M.N.; Zok, F.W. Optimization of digital image correlation for high strain mapping of ceramic composites. Exp. Mech. 2012, 52, 1407–1421. [Google Scholar] [CrossRef]
- Ma, Z.C.; Zhao, H.W.; Li, Q.C.; Wang, K.T.; Zhou, X.Q.; Hu, X.L.; Cheng, H.B.; Lu, S. Novel in situ device for investigating the tensile and fatigue behaviors of bulk materials. Rev. Sci. Instrum. 2013, 84, 045104. [Google Scholar] [CrossRef]
- Liu, X.; Lu, R.S. Calibration of a stereo microscope based on non-coplanar feature points with iteratively weighted radial alignment constraint. Opt. Lasers Eng. 2020, 127, 105977. [Google Scholar] [CrossRef]
- Tong, T. An evaluation of digital image correlation criteria for strain mapping applications. Strain 2005, 41, 167–175. [Google Scholar] [CrossRef]
- Baker, S.; Matthews, I. Equivalence and efficiency of image alignment algorithm. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA, 8–14 December 2001; pp. 1090–1097. [Google Scholar] [CrossRef] [Green Version]
- Baker, S.; Matthews, I. Lucas-Kanade 20 Years on a Unifying Framework. Int. J. Comput. Vis. 2014, 56, 221–255. [Google Scholar] [CrossRef]
- Pan, B.; Li, K.; Tong, W. Fast, robust and accurate digital image correlation calculation without redundant computations. Exp. Mech. 2013, 53, 1277–1289. [Google Scholar] [CrossRef]
- Zhou, P.; Goodson, K.E. Subpixel displacement and deformation gradient measurement using digital image/speckle correlation (DISC). Opt. Eng. 2001, 40, 1613–1620. [Google Scholar] [CrossRef]
- Schreier, H.W.; Braasch, J.R.; Sutton, M.A. Systematic errors in digital image correlation caused by intenacsity interpolation. Opt. Eng. 2000, 39, 2915–2921. [Google Scholar] [CrossRef]
- Sutton, M.A.; Orteu, J.J.; Schreier, H.W. Image Correlation for Shape, Motion and Deformation Measurements, 1st ed.; Springer: Boston, MA, USA, 2009; pp. 1–34. [Google Scholar] [CrossRef]
- Sutton, M.A.; Orteu, J.J.; Schreier, H.W. Image Correlation for Shape, Motion and Deformation Measurements, 1st ed.; Springer: Boston, MA, USA, 2009; pp. 233–243. [Google Scholar] [CrossRef]
- Pan, B.; Xie, H.M.; Guo, Z.Q.; Hua, T. Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation. Opt. Eng. 2007, 46, 033601. [Google Scholar] [CrossRef]
- Wikipedia. Available online: https://en.wikipedia.org/wiki/Copper (accessed on 13 May 2020).
Parameter | Reference Value |
---|---|
Tensile load | 0–200 N |
Straightness of load | 0.21% |
Displacement | −12 ± 12 mm |
Straightness of LVDT | 0.11% |
Displacement speed | 0.07 um/s to about 2 um/s |
Specimen dimensions (length × width × thickness) | 60 mm × 8 mm × 4 mm |
Parameter | Camera 1 | Camera 2 | ||||
---|---|---|---|---|---|---|
f/mm | 113.8105 | 96.1846 | ||||
0.0056 | 0.0031 | |||||
1.0045 | 1.0049 | |||||
u0/pixel | 558.4520 | 616.7733 | ||||
v0/pixel | 545.0547 | 491.4351 | ||||
Rotation matrix | 0.9954 | 0.0310 | −0.0905 | 0.9914 | 0.0260 | 0.1286 |
−0.0317 | 0.9995 | 0.0010 | −0.0255 | 0.9997 | −0.0033 | |
0.0904 | 0.0039 | 0.9959 | −0.1287 | −0.0004 | 0.9917 | |
Translation vector | −11.2157 | −11.3306 | 175.9052 | −13.0778 | −11.3371 | 148.9680 |
Method | Reprojection Error (pixels) |
---|---|
Zhang’s method | 0.4218 |
Traditional two-step method | 0.3909 |
WRAC without initial value | 0.2860 |
WRAC with initial value | 0.1285 |
Amplified WRAC method | 0.0966 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Lu, R. Testing System for the Mechanical Properties of Small-Scale Specimens Based on 3D Microscopic Digital Image Correlation. Sensors 2020, 20, 3530. https://doi.org/10.3390/s20123530
Liu X, Lu R. Testing System for the Mechanical Properties of Small-Scale Specimens Based on 3D Microscopic Digital Image Correlation. Sensors. 2020; 20(12):3530. https://doi.org/10.3390/s20123530
Chicago/Turabian StyleLiu, Xu, and Rongsheng Lu. 2020. "Testing System for the Mechanical Properties of Small-Scale Specimens Based on 3D Microscopic Digital Image Correlation" Sensors 20, no. 12: 3530. https://doi.org/10.3390/s20123530
APA StyleLiu, X., & Lu, R. (2020). Testing System for the Mechanical Properties of Small-Scale Specimens Based on 3D Microscopic Digital Image Correlation. Sensors, 20(12), 3530. https://doi.org/10.3390/s20123530