A Closed-Form Method of Acoustic Emission Source Location for Velocity-Free System Using Complete TDOA Measurements
Abstract
:1. Introduction
2. Method
2.1. Complete Time Difference of Arrival (TDOA) Measurements
2.2. Construction of Linear Equations Using Complete TDOA Measurements
- ,
- ,
- ,
- ,
- ,
2.3. Calculation of the Acoustic Emission (AE) Source Coordinate and Acoustic Velocity
3. Experimental Verification
4. Simulation Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, L.; Yang, K.; Bian, X.; Liu, Q.; Yang, Y.; Ma, F. A Gas Leakage Localization Method Based on a Virtual Ultrasonic Sensor Array. Sensors 2019, 19, 3152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Tian, Y.; Wang, J.; Cen, M. Modeling and Experiments on Nonlinear Ultrasonic Guided Waves for Fatigue Crack Detection and Evaluation. Struct. Heal. Monit. Int. J. 2019. [Google Scholar] [CrossRef]
- Manuello, A.; Niccolini, G.; Carpinteri, A. AE monitoring of a concrete arch road tunnel: Damage evolution and localization. Eng. Fract. Mech. 2019, 210, 279–287. [Google Scholar] [CrossRef]
- Lu, C.; Liu, G.; Liu, Y.; Zhang, N.; Xue, J.; Zhang, L. Microseismic multi-parameter characteristics of rockburst hazard induced by hard roof fall and high stress concentration. Int. J. Rock Mech. Min. Sci. 2015, 76, 18–32. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, H.; Cai, X.; Chen, L.; Cheng, R. Damage Evolution and Failure Behavior of Post-Mainshock Damaged Rocks under Aftershock Effects. Energies 2019, 12, 4429. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Dou, L.; Konietzky, H.; Song, Z.; Huang, S. Cyclic fatigue characteristics of strong burst-prone coal: Experimental insights from energy dissipation, hysteresis and micro-seismicity. Int. J. Fatigue 2020, 133, 105429. [Google Scholar] [CrossRef]
- Song, Z.; Frühwirt, T.; Konietzky, H. Inhomogeneous mechanical behaviour of concrete subjected to monotonic and cyclic loading. Int. J. Fatigue 2020, 132, 105383. [Google Scholar] [CrossRef]
- Zhou, Z.; Cai, X.; Li, X.; Cao, W.; Du, X. Dynamic Response and Energy Evolution of Sandstone Under Coupled Static–Dynamic Compression: Insights from Experimental Study into Deep Rock Engineering Applications. Rock Mech. Rock Eng. 2020, 53, 1305–1331. [Google Scholar] [CrossRef]
- Cai, X.; Zhou, Z.; Liu, K.; Du, X.; Zang, H. Water-weakening effects on the mechanical behavior of different rock types: Phenomena and mechanisms. Appl. Sci. 2019, 9, 4450. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.; Zeng, Z.; Sun, L.; Rui, X.; Fan, F.; Yue, G.; Zhao, Y.; Feng, H. An Impact Location Algorithm for Spacecraft Stiffened Structure Based on Posterior Possibility Correlation. Sensors 2020, 20, 368. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Zou, W.; Li, X.; Shu, W.; Wang, Z. Collaborative localization method using analytical and iterative solutions for microseismic/acoustic emission sources in the rockmass structure for underground mining. Eng. Fract. Mech. 2019, 210, 95–112. [Google Scholar] [CrossRef]
- Lienert, B.R.; Berg, E.; Frazer, L.N. Hypocenter: An Earthquake Location Method Using Centered, Scaled, and Adaptively Damped Least Squares. Bull. Seismol. Soc. Am. 1986, 76, 771–783. [Google Scholar]
- Zhou, Z.; Rui, Y.; Zhou, J.; Dong, L.; Cai, X. Locating an Acoustic Emission Source in Multilayered Media Based on the Refraction Path Method. IEEE Access 2018, 6, 25090–25099. [Google Scholar] [CrossRef]
- Prugger, A.; Gendzwill, D. Microearthquake Location: A Nonlinear Approach That Makes Use of a Simplex Stepping Procedure. Bull. Seismol. Soc. Am. 1988, 78, 799–815. [Google Scholar]
- Zhou, Z.; Zhou, J.; Cai, X.; Rui, Y.; Chen, L.; Wang, H. Acoustic emission source location considering refraction in layered media with cylindrical surface. Trans. Nonferrous Met. Soc. China 2020, 30, 789–799. [Google Scholar] [CrossRef]
- Smith, J.O.; Abel, J.S. Spherical Interpolation Method of Source Localization. IEEE J. Ocean. Eng. 1987, 12, 246–252. [Google Scholar] [CrossRef]
- Chan, Y.T.; Ho, K.C. A simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Process. 1994, 42, 1905–1915. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Rui, Y.; Zhou, J.; Dong, L.; Chen, L.; Cai, X.; Cheng, R. A new closed-form solution for acoustic emission source location in the presence of outliers. Appl. Sci. 2018, 8, 949. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Dong, L.; Li, X.; Yin, Z.; Liu, X. Effects of sonic speed on location accuracy of acoustic emission source in rocks. Trans. Nonferrous Met. Soc. China 2011, 21, 2719–2726. [Google Scholar] [CrossRef]
- Dong, L.; Zou, W.; Sun, D.; Tong, X.; Li, X.; Shu, W. Some Developments and New Insights for Microseismic/Acoustic Emission Source Localization. Shock Vib. 2019, 2019, 9732606. [Google Scholar] [CrossRef] [Green Version]
- Aki, K.; Lee, W.H.K. Determination of three-dimensional velocity anomalies under a seismic array using first p arrival times from local earthquakes—1. a homogeneous initial model. J. Geophys. Res. 1976, 81, 4381–4399. [Google Scholar] [CrossRef]
- Aki, K.; Christoffersson, A.; Husebye, E.S. Determination of the three-dimensional seismic structure of the lithosphere. J. Geophys. Res. 1977, 82, 277–296. [Google Scholar] [CrossRef]
- Ciampa, F.; Meo, M. A new algorithm for acoustic emission localization and flexural group velocity determination in anisotropic structures. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1777–1786. [Google Scholar] [CrossRef]
- Li, J.; Gao, Y.; Xie, Y.; Zhou, Y.; Yang, K. Improvement of microseism locating based on simplex method without velocity measuring. Chinese J. Rock Mech. Eng. 2014, 33, 1336–1346. [Google Scholar]
- Dong, L.; Li, X. A Microseismic/Acoustic Emission Source Location Method Using Arrival Times of PS Waves for Unknown Velocity System. Int. J. Distrib. Sens. Netw. 2013, 9, 307489. [Google Scholar] [CrossRef]
- Li, X.; Dong, L. An efficient closed-form solution for acoustic emission source location in three-dimensional structures. AIP Adv. 2014, 4, 27110. [Google Scholar] [CrossRef]
- Dong, L.; Shu, W.; Li, X.; Han, G.; Zou, W. Three Dimensional Comprehensive Analytical Solutions for Locating Sources of Sensor Networks in Unknown Velocity Mining System. IEEE Access 2017, 5, 11337–11351. [Google Scholar] [CrossRef]
- Zhou, Z.; Lan, R.; Rui, Y.; Zhou, J.; Dong, L.; Cheng, R.; Cai, X. A new acoustic emission source location method using tri-variate kernel density estimator. IEEE Access 2019, 7, 158379–158388. [Google Scholar] [CrossRef]
- Blake, W.; Leighton, F.; Duvall, W.I. Microseismic Techniques for Monitoring the Behavior of Rock Structures; US Department of the Interior, Bureau of Mines: Washington, DC, USA, 1974; Volume 665. [Google Scholar]
- Leighton, F.; Blake, W. Rock Noise Source Location Techniques; Bureau of Mines: Washington, DC, USA, 1970; Volume 7432. [Google Scholar]
- Fang, W.; Liu, L.; Yang, J.; Shui, A. A non⁃iterative AE source localization algorithm with unknown velocity. J. Logist. Eng. Univ. 2016, 32, 1–7. [Google Scholar]
- Chen, J.C.; Yao, K.; Tung, T.L.; Reed, C.W.; Chen, D. Source localization and tracking of a wideband source using a randomly distributed beamforming sensor array. Int. J. High Perform. Comput. Appl. 2002, 16, 259–272. [Google Scholar] [CrossRef]
- Annibale, P.; Rabenstein, R. Closed-form estimation of the speed of propagating waves from time measurements. Multidimens. Syst. Signal Process. 2014, 25, 361–378. [Google Scholar] [CrossRef]
- Friedlander, B. A Passive Localization Algorithm and Its Accuracy Analysis. IEEE J. Ocean. Eng. 1987, 12, 234–245. [Google Scholar] [CrossRef]
- Yang, C.H.; Hu, J.S. Estimation of sound source number and directions under a multisource reverberant environment. EURASIP J. Adv. Signal Process. 2010, 2010, 870756. [Google Scholar]
- Rabenstein, R.; Annibale, P. Acoustic Source Localization under Variable Speed of Sound Conditions. Wirel. Commun. Mob. Comput. 2017, 2017, 9524943. [Google Scholar] [CrossRef]
- Schmidt, R.O. New Approach To Geometry of Range Difference Location. IEEE Trans. Aerosp. Electron. Syst. 1972, 8, 821–835. [Google Scholar] [CrossRef]
- Maochen, G. Analysis of source location algorithms Part I: Overview and non-iterative methods. J. Acoust. Emiss. 2003, 21, 14–24. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Rui, Y.; Cai, X.; Lan, R.; Cheng, R. A Closed-Form Method of Acoustic Emission Source Location for Velocity-Free System Using Complete TDOA Measurements. Sensors 2020, 20, 3553. https://doi.org/10.3390/s20123553
Zhou Z, Rui Y, Cai X, Lan R, Cheng R. A Closed-Form Method of Acoustic Emission Source Location for Velocity-Free System Using Complete TDOA Measurements. Sensors. 2020; 20(12):3553. https://doi.org/10.3390/s20123553
Chicago/Turabian StyleZhou, Zilong, Yichao Rui, Xin Cai, Riyan Lan, and Ruishan Cheng. 2020. "A Closed-Form Method of Acoustic Emission Source Location for Velocity-Free System Using Complete TDOA Measurements" Sensors 20, no. 12: 3553. https://doi.org/10.3390/s20123553
APA StyleZhou, Z., Rui, Y., Cai, X., Lan, R., & Cheng, R. (2020). A Closed-Form Method of Acoustic Emission Source Location for Velocity-Free System Using Complete TDOA Measurements. Sensors, 20(12), 3553. https://doi.org/10.3390/s20123553