Developing of Low-Cost Air Pollution Sensor—Measurements with the Unmanned Aerial Vehicles in Poland
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ramanathan, V.; Crutzen, P.J.; Kiehl, J.T.; Rosenfeld, D. Atmosphere: Aerosols, climate, and the hydrological cycle. Science 2001, 294, 2119–2124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piacentino, A.; Duic, N.; Markovska, N.; Mathiesen, B.V.; Guzović, Z.; Eveloy, V.; Lund, H. Sustainable and cost-efficient energy supply and utilisation through innovative concepts and technologies at regional, urban and single-user scales. Energy 2019, 182, 254–268. [Google Scholar] [CrossRef]
- Kostowski, W.J.; Usón, S.; Stanek, W.; Bargiel, P. Thermoecological cost of electricity production in the natural gas pressure reduction process. Energy 2014, 76, 10–18. [Google Scholar] [CrossRef]
- Kılkış, Ş.; Krajačić, G.; Duić, N.; Montorsi, L.; Wang, Q.; Rosen, M.A.; Ahmad Al-Nimr, M. Research frontiers in sustainable development of energy, water and environment systems in a time of climate crisis. Energy Convers. Manag. 2019, 199, 111938. [Google Scholar] [CrossRef]
- Mikulčić, H.; Duić, N.; Schlör, H.; Dewil, R. Troubleshooting the problems arising from sustainable development. J. Environ. Manage. 2019, 232, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Trájer, A.J.; Nagy, G.; Domokos, E. Exploration of the heterogeneous effect of climate change on ozone concentration in an urban environment. Int. J. Environ. Health Res. 2019, 29, 276–289. [Google Scholar] [CrossRef]
- Wang, X.C.; Klemeš, J.J.; Dong, X.; Fan, W.; Xu, Z.; Wang, Y.; Varbanov, P.S. Air pollution terrain nexus: A review considering energy generation and consumption. Renew. Sustain. Energy Rev. 2019, 105, 71–85. [Google Scholar] [CrossRef]
- Klemeš, J.J.; Varbanov, P.S.; Walmsley, T.G.; Foley, A. Process Integration and Circular Economy for Renewable and Sustainable Energy Systems. Renew. Sustain. Energy Rev. 2019, 116, 109435. [Google Scholar] [CrossRef]
- Zhang, X.; Qian, S.; Xu, J.; Cui, H.; Ma, R.; Gao, F. Relationship between Meteorological Factors and Diffusion of Atmospheric Pollutants. Chem. Eng. Trans. 2018, 71, 1417–1422. [Google Scholar]
- De Collaço, A.; Mendes, F.; Dias, L.P.; Simoes, S.G.; Pukšec, T.; Seixas, J.; Bermann, C. What if São Paulo (Brazil) would like to become a renewable and endogenous energy-based megacity? Renew. Energy 2019, 138, 416–433. [Google Scholar] [CrossRef]
- Becerra, J.A.; Lizana, J.; Gil, M.; Barrios-Padura, A.; Blondeau, P.; Chacartegui, R. Identification of potential indoor air pollutants in schools. J. Clean. Prod. 2020, 242, 118420. [Google Scholar] [CrossRef]
- Olszowski, T.; Tomaszewska, B.; Góralna-Włodarczyk, K. Air quality in non-industrialised area in the typical Polish countryside based on measurements of selected pollutants in immission and deposition phase. Atmos. Environ. 2012, 50, 139–147. [Google Scholar] [CrossRef]
- Olszowski, T.; Ziembik, Z. An alternative conception of PM10 concentration changes after short-term precipitation in urban environment. J. Aerosol Sci. 2018, 121, 21–30. [Google Scholar] [CrossRef]
- Stieb, D.M.; Judek, S.; Burnett, R.T. Meta-analysis of time-series studies of air pollution and mortality: Effects of gases and particles and the influence of cause of death, age, and season. J. Air Waste Manag. Assoc. 2002, 52, 470–484. [Google Scholar] [CrossRef] [Green Version]
- Davidson, C.I.; Phalen, R.F.; Solomon, P.A. Airborne particulate matter and human health: A review. Aerosol Sci. Technol. 2005, 39, 737–749. [Google Scholar] [CrossRef]
- Pui, D.Y.H.; Chen, S.C.; Zuo, Z. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology 2014, 13, 1–26. [Google Scholar] [CrossRef]
- Wang, L.; Su, J.; Gu, Z.; Shui, Q. Effect of street canyon shape and tree layout on pollutant diffusion under real tree model. Sustainability 2020, 12, 2105. [Google Scholar] [CrossRef] [Green Version]
- Hao, C.; Xie, X.; Huang, Y.; Huang, Z. Study on influence of viaduct and noise barriers on the particulate matter dispersion in street canyons by CFD modeling. Atmos. Pollut. Res. 2019, 10, 1723–1735. [Google Scholar] [CrossRef]
- Bian, H.; Han, S.; Tie, X.; Sun, M.; Liu, A. Evidence of impact of aerosols on surface ozone concentration in Tianjin, China. Atmos. Environ. 2007, 41, 4672–4681. [Google Scholar] [CrossRef]
- Sportisse, B. Box models versus Eulerian models in air pollution modeling. Atmos. Environ. 2001, 35, 173–178. [Google Scholar] [CrossRef]
- Karkoulias, V.A.; Marazioti, P.E.; Georgiou, D.P.; Maraziotis, E.A. Computational Fluid Dynamics modeling of the trace elements dispersion and comparison with measurements in a street canyon with balconies in the city of Patras, Greece. Atmos. Environ. 2020, 223, 117210. [Google Scholar] [CrossRef]
- Adams, M.D.; Massey, F.; Chastko, K.; Cupini, C. Spatial modelling of particulate matter air pollution sensor measurements collected by community scientists while cycling, land use regression with spatial cross-validation, and applications of machine learning for data correction. Atmos. Environ. 2020, 230. [Google Scholar] [CrossRef]
- Dang, R.; Yang, Y.; Li, H.; Hu, X.M.; Wang, Z.; Huang, Z.; Zhou, T.; Zhang, T. Atmosphere boundary layer height (ABLH) determination under multiple-layer conditions using micro-pulse lidar. Remote Sens. 2019, 11, 263. [Google Scholar] [CrossRef] [Green Version]
- Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Baars, H.; Bange, J.; Lampert, A. ALADINA—An unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer. Atmos. Meas. Tech. 2015, 8, 1627–1639. [Google Scholar] [CrossRef] [Green Version]
- Li, X.B.; Wang, D.S.; Lu, Q.C.; Peng, Z.R.; Wang, Z.Y. Investigating vertical distribution patterns of lower tropospheric PM2.5 using unmanned aerial vehicle measurements. Atmos. Environ. 2018, 173, 62–71. [Google Scholar] [CrossRef]
- Anweiler, S. Multicopter platform prototype for environmental monitoring. J. Clean. Prod. 2017, 155, 204–211. [Google Scholar] [CrossRef]
- Anweiler, S.; Piwowarski, D.; Ulbrich, R. Unmanned Aerial Vehicles for Environmental Monitoring with Special Reference to Heat Loss. In Proceedings of the E3S Web of Conferences, Polanica-Zdrój, Poland, 13–15 September 2017; Volume 19. [Google Scholar]
- Szymocha, S.; Piwowarski, D.; Anweiler, S. Unmanned aerial vehicle application for air pollution monitoring. In Proceedings of the AIP Conference; American Institute of Physics Inc.: Zakopane, Poland, 4–6 June 2018; Volume 2029. [Google Scholar]
- Bisht, D.S.; Tiwari, S.; Dumka, U.C.; Srivastava, A.K.; Safai, P.D.; Ghude, S.D.; Chate, D.M.; Rao, P.S.P.; Ali, K.; Prabhakaran, T.; et al. Tethered balloon-born and ground-based measurements of black carbon and particulate profiles within the lower troposphere during the foggy period in Delhi, India. Sci. Total Environ. 2016, 573, 894–905. [Google Scholar] [CrossRef]
- Ferrero, L.; Riccio, A.; Perrone, M.G.; Sangiorgi, G.; Ferrini, B.S.; Bolzacchini, E. Mixing height determination by tethered balloon-based particle soundings and modeling simulations. Atmos. Res. 2011, 102, 145–156. [Google Scholar] [CrossRef]
- Brady, J.M.; Stokes, M.D.; Bonnardel, J.; Bertram, T.H. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements. Environ. Sci. Technol. 2016, 50, 1376–1383. [Google Scholar] [CrossRef]
- Zhou, S.; Peng, S.; Wang, M.; Shen, A.; Liu, Z. The Characteristics and Contributing Factors of Air Pollution in Nanjing: A Case Study Based on an Unmanned Aerial Vehicle Experiment and Multiple Datasets. Atmosphere 2018, 9, 343. [Google Scholar] [CrossRef] [Green Version]
- Carrozzo, M.; De Vito, S.; Esposito, E.; Salvato, M.; Formisano, F.; Massera, E.; Di Francia, G.; Veneri, P.D.; Iadaresta, M.; Mennella, A. UAV intelligent chemical multisensor payload for networked and impromptu gas monitoring tasks. In Proceedings of the 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace 2018), Rome, Italy, 20–22 June 2018; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2018; pp. 112–116. [Google Scholar]
- Liu, C.; Fedorovich, E.; Huang, J. Revisiting entrainment relationships for shear-free and sheared convective boundary layers through large-eddy simulations. Q. J. R. Meteorol. Soc. 2018, 144, 2182–2195. [Google Scholar] [CrossRef]
- Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Madrigal, V.P.; Mallinis, G.; Dor, E.B.; Helman, D.; Estes, L.; Ciraolo, G.; et al. On the use of unmanned aerial systems for environmental monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef] [Green Version]
- Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef] [Green Version]
- Gago, J.; Douthe, C.; Coopman, R.E.; Gallego, P.P.; Ribas-Carbo, M.; Flexas, J.; Escalona, J.; Medrano, H. UAVs challenge to assess water stress for sustainable agriculture. Agric. Water Manag. 2015, 153, 9–19. [Google Scholar] [CrossRef]
- Khanal, S.; Fulton, J.; Shearer, S. An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput. Electron. Agric. 2017, 139, 22–32. [Google Scholar] [CrossRef]
- Hayat, S.; Yanmaz, E.; Muzaffar, R. Survey on Unmanned Aerial Vehicle Networks for Civil Applications: A Communications Viewpoint. IEEE Commun. Surv. Tutor. 2016, 18, 2624–2661. [Google Scholar] [CrossRef]
- Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A Compilation of UAV Applications for Precision Agriculture. Comput. Netw. 2020, 172, 107148. [Google Scholar] [CrossRef]
- Otto, A.; Agatz, N.; Campbell, J.; Golden, B.; Pesch, E. Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: A survey. Networks 2018, 72, 411–458. [Google Scholar] [CrossRef]
- Babaan, J.B.; Ballori, J.P.; Tamondong, A.M.; Ramos, R.V.; Ostrea, P.M. Estimation of PM 2.5 vertical distribution using customized UAV and mobile sensors in Brgy. UP Campus, Diliman, Quezon City. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives, Kuala Lumpur, Malaysia, 3–5 September 2018; International Society for Photogrammetry and Remote Sensing: Nice, France, 2018; Volume 42, pp. 89–103. [Google Scholar]
- Rohi, G.; Ejofodomi, O.; Ofualagba, G. Autonomous monitoring, analysis, and countering of air pollution using environmental drones. Heliyon 2020, 6, e03252. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Huang, J.; Wang, Y.; Tao, X.; Hu, C.; Deng, L.; Xu, J.; Xiao, H.W.; Luo, L.; Xiao, H.Y.; et al. Vertical distribution of PM2.5 and interactions with the atmospheric boundary layer during the development stage of a heavy haze pollution event. Sci. Total Environ. 2020, 704, 135329. [Google Scholar] [CrossRef]
- Peng, Z.R.; Wang, D.; Wang, Z.; Gao, Y.; Lu, S. A study of vertical distribution patterns of PM2.5 concentrations based on ambient monitoring with unmanned aerial vehicles: A case in Hangzhou, China. Atmos. Environ. 2015, 123, 357–369. [Google Scholar] [CrossRef]
- Sun, Y.; Song, T.; Tang, G.; Wang, Y. The vertical distribution of PM2.5 and boundary-layer structure during summer haze in Beijing. Atmos. Environ. 2013, 74, 413–421. [Google Scholar] [CrossRef]
- Harnisch, F.; Gohm, A.; Fix, A.; Schnitzhofer, R.; Hansel, A.; Neininger, B. Spatial distribution of aerosols in the Inn Valley atmosphere during wintertime. Meteorol. Atmos. Phys. 2009, 103, 223–235. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Zhu, B.; Huang, Y.; Shi, S.; Wang, H.; An, J.; Yu, X. Vertical distributions of black carbon aerosols over rural areas of the Yangtze River Delta in winter. Sci. Total Environ. 2019, 661, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Higgins, C.W.; Wing, M.G.; Kelley, J.; Sayde, C.; Burnett, J.; Holmes, H.A. A high resolution measurement of the morning ABL transition using distributed temperature sensing and an unmanned aircraft system. Environ. Fluid Mech. 2018, 18, 683–693. [Google Scholar] [CrossRef]
- Nishanth, T.; Praseed, K.M.; Kumar, M.K.S.; Valsaraj, K.T. Influence of ozone precursors and PM10 on the variation of surface O3 over Kannur, India. Atmos. Res. 2014, 138, 112–124. [Google Scholar] [CrossRef]
- Qu, Y.; Han, Y.; Wu, Y.; Gao, P.; Wang, T. Study of PBLH and its correlation with particulate matter from one-year observation over Nanjing, Southeast China. Remote Sens. 2017, 9, 668. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Liu, J.; Gao, Z.; Li, Y.; Huang, M.; Fan, S.; Zhang, X.; Yang, Y.; Miao, S.; Zou, H.; et al. Vertical observations of the atmospheric boundary layer structure over Beijing urban area during air pollution episodes. Atmos. Chem. Phys. 2019, 19, 6949–6967. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Zhu, B.; Shi, S.; Huang, Y. Two inversion layers and their impacts on PM2.5 concentration over the yangtze river delta, China. J. Appl. Meteorol. Climatol. 2019, 58, 2349–2362. [Google Scholar] [CrossRef]
- Libra, M.; Daneček, M.; Lešetický, J.; Poulek, V.; Sedláček, J.; Beránek, V. Monitoring of defects of a photovoltaic power plant using a drone. Energies 2019, 12, 795. [Google Scholar] [CrossRef] [Green Version]
- Shihavuddin, A.; Chen, X.; Fedorov, V.; Christensen, A.N.; Riis, N.A.B.; Branner, K.; Dahl, A.B.; Paulsen, R.R. Wind Turbine Surface Damage Detection by Deep Learning Aided Drone Inspection Analysis. Energies 2019, 12, 676. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Wu, Y.; Liu, C.; Yang, G.; Li, Z. Undelayed initialization using dual channel vision for ego-motion in power line inspection. Chin. J. Electron. 2016, 25, 33–39. [Google Scholar] [CrossRef]
- Bilaşco, Ş.; Roşca, S.; Petrea, D.; Vescan, I.; Fodorean, I.; Filip, S. 3D Reconstruction of Landslides for the Acquisition of Digital Databases and Monitoring Spatiotemporal Dynamics of Landslides Based on GIS Spatial Analysis and UAV Techniques. In Spatial Modeling in GIS and R for Earth and Environmental Sciences; Elsevier: Amsetrdam, The Netherlands, 2019; pp. 451–465. [Google Scholar]
- Czapaj-Atłas, R.; Dudek, B. Drony, mini- i mikrodrony – przegląd obszarów zastosowań bezzałogowych statków powietrznych dla potrzeb monitoringu i inspekcji, w szczególności w obszarze energetyki. Energetyka 2014, 8, 485–492. (In Polish) [Google Scholar]
- Duda, D. To nie science fiction. O dronach w energetyce i nie tylko. Energetyka Ciepl. Zawodowa 2017, 4, 24–28. (In Polish) [Google Scholar]
- Wang, Y.; Xing, J.; Qian, S. Selectivity enhancement in electronic nose based on an optimized DQN. Sensors 2017, 17, 2356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gas Sensors & Modules: Products—Figaro Engineering Inc. Available online: http://www.figarosensor.com/product/sensor/ (accessed on 11 March 2020).
- The Plantower PMS5003 and PMS7003 Air Quality Sensor Experiment. Available online: https://aqicn.org/sensor/pms5003-7003/pl/ (accessed on 11 March 2020).
- ATmega328—8-Bit AVR Microcontrollers. Available online: https://www.microchip.com/wwwproducts/en/ATmega328 (accessed on 11 March 2020).
- NMEA Data. Available online: https://www.gpsinformation.org/dale/nmea.htm (accessed on 11 March 2020).
- Throneberry, G.; Hocut, C.M.; Shu, F.; Abdelkefi, A. Multi-rotor wake propagation investigation for atmospheric sampling. In Proceedings of the AIAA Aviation 2019 Forum, Dallas, TX, USA, 17–21 June 2019; American Institute of Aeronautics and Astronautics (AIAA): Reston, Virginia, 2019. [Google Scholar]
- Wang, Z.; Henricks, Q.; Zhuang, M.; Pandey, A.; Sutkowy, M.; Harter, B.; McCrink, M.; Gregory, J. Impact of Rotor–Airframe Orientation on the Aerodynamic and Aeroacoustic Characteristics of Small Unmanned Aerial Systems. Drones 2019, 3, 56. [Google Scholar] [CrossRef] [Green Version]
- WIOŚ Opole—Prezentacja Pomiarów. Available online: http://powietrze.opole.pios.gov.pl/dane-pomiarowe/automatyczne/stacja/118/parametry/461-549/dzienny/11.03.2020 (accessed on 11 March 2020). (In Polish)
- Nguyen, B. PM2.5 Low-Cost Sensors and Calibration Data for SDS011 and PMS7003. Hanoi Vietnam 2019. [Google Scholar] [CrossRef]
Sensor | Gas Types | Measurement Range | Data Output | Power Consumption | Resolution | Price |
---|---|---|---|---|---|---|
MQ-2 | LPG, Propane, CH4 | 300–10,000 ppm | analog | <900 mW | due to adc = 10 bit | 1€ |
MQ-3 | Ethanol, Hexane, Benzine | 0.05–10 mg/L | analog | <750 mW | due to adc = 10 bit | 1€ |
MQ-4 | CH4, LPG, H2 | 200–10,000 ppm | analog | <750 mW | due to adc = 10 bit | 1€ |
MQ-5 | iso-butane, propane | 200–10,000 ppm | analog | <800 mW | due to adc = 10 bit | 1€ |
MQ-6 | iso-butane, propane | 200–10,000 ppm | analog | <750 mW | due to adc = 10 bit | 1€ |
MQ-7 | CO, H2 | 20–2000 ppm | analog | <350 mW | due to adc = 10 bit | 1€ |
MQ-8 | H2 | 100–10,000 ppm | analog | <800 mW | due to adc = 10 bit | 2€ |
MQ-135 | C6H6, NH3 | 10–1000 ppm | analog | <800 mW | due to adc = 10 bit | 1€ |
TGS 822 | C6H6, Acetone, Hexane | 50–1000 ppm | analog | <660 mW | due to adc = 10 bit | 6€ |
PMS 7003 | PM1.0, PM2.5, PM10 | 0–1000 μg/m3 | digital | <500 mW | 1 ug/m3 | 13€ |
Date | Outside Temperature, °C | Outside Humidity, % | Wind Speed, m/s | Rain Amount, mm | Barometric Pressure, hPa |
---|---|---|---|---|---|
12 February 2020 | 3.11 | 82.99 | 0.41 | 0.00 | 1024.32 |
13 February 2020 | 3.61 | 84.34 | 0.39 | 0.00 | 1021.96 |
14 February 2020 | 1.39 | 84.51 | 1.26 | 0.00 | 1018.86 |
15 February 2020 | 2.73 | 77.65 | 1.79 | 0.00 | 1020.67 |
16 February 2020 | 3.61 | 83.55 | 0.16 | 0.00 | 1028.77 |
17 February 2020 | 2.42 | 86.26 | 0.93 | 0.00 | 1024.38 |
18 February 2020 | 2.89 | 87.79 | 0.38 | 0.02 | 1023.03 |
19 February 2020 | 2.62 | 90.55 | 0.32 | 0.01 | 1031.20 |
20 February 2020 | 2.34 | 85.43 | 0.47 | 0.00 | 1043.93 |
21 February 2020 | 1.11 | 84.23 | 0.72 | 0.00 | 1039.25 |
22 February 2020 | 0.61 | 87.36 | 2.25 | 0.00 | 1029.62 |
23 February 2020 | 2.11 | 83.91 | 1.01 | 0.00 | 1032.00 |
24 February 2020 | −0.65 | 84.10 | 0.30 | 0.00 | 1022.98 |
25 February 2020 | −1.24 | 85.48 | 0.22 | 0.00 | 1021.24 |
26 February 2020 | −0.84 | 86.71 | 0.16 | 0.00 | 1019.42 |
27 February 2020 | 1.35 | 85.82 | 0.51 | 0.00 | 1013.97 |
28 February 2020 | 3.16 | 83.21 | 1.88 | 0.00 | 1000.50 |
05 March 2020 | 4.00 | 77.10 | 4.93 | 0.00 | 1004.75 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pochwała, S.; Gardecki, A.; Lewandowski, P.; Somogyi, V.; Anweiler, S. Developing of Low-Cost Air Pollution Sensor—Measurements with the Unmanned Aerial Vehicles in Poland. Sensors 2020, 20, 3582. https://doi.org/10.3390/s20123582
Pochwała S, Gardecki A, Lewandowski P, Somogyi V, Anweiler S. Developing of Low-Cost Air Pollution Sensor—Measurements with the Unmanned Aerial Vehicles in Poland. Sensors. 2020; 20(12):3582. https://doi.org/10.3390/s20123582
Chicago/Turabian StylePochwała, Sławomir, Arkadiusz Gardecki, Piotr Lewandowski, Viola Somogyi, and Stanisław Anweiler. 2020. "Developing of Low-Cost Air Pollution Sensor—Measurements with the Unmanned Aerial Vehicles in Poland" Sensors 20, no. 12: 3582. https://doi.org/10.3390/s20123582
APA StylePochwała, S., Gardecki, A., Lewandowski, P., Somogyi, V., & Anweiler, S. (2020). Developing of Low-Cost Air Pollution Sensor—Measurements with the Unmanned Aerial Vehicles in Poland. Sensors, 20(12), 3582. https://doi.org/10.3390/s20123582