High-Sensitivity Goos-Hänchen Shifts Sensor Based on BlueP-TMDCs-Graphene Heterostructure
Abstract
:1. Introduction
2. Design Consideration and Mathematical Model
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shaaban, A.; Hameed, M.F.O.; Gomaa, L.; Obayya, S.S.A. Accurate calculation of Goos-Hänchen shift at critical angle for complex laser beam profiles using beam propagation method. Optik 2018, 157, 1106–1114. [Google Scholar] [CrossRef]
- Huamán, A.; Usaj, G. Anomalous Goos-Hänchen shift in the Floquet scattering of Dirac fermions. Phys. Rev. A 2019, 100, 033409. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wan, Y.; Liu, J.; Kong, W.; Zheng, Z. Effect of Excitation Beam Divergenceon the Goos–HänchenShift Enhanced byBloch Surface Waves. Appl. Sci. 2018, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Cheng, F. Effects of strain on Goos-Hänchen shifts of monolayer phosphorene. Phys. E Low Dimens. Syst. Nanostruct. 2018, 97, 335–339. [Google Scholar] [CrossRef]
- A Carvalho, S.; De Leo, S.; Huguenin, J.A.O.; Martino, M.; Da Silva, L. Experimental evidence of laser power oscillations induced by the relative Fresnel (Goos–Hänchen) phase. Laser Phys. Lett. 2019, 16, 065001. [Google Scholar] [CrossRef] [Green Version]
- Jena, S.C.; Shrivastava, S.; Saxena, S.; Kumar, N.; Maiti, S.K.; Mishra, B.P.; Singh, R.K. Surface plasmon resonance immunosensor for label-free detection of BIRC5 biomarker in spontaneously occurring canine mammary tumours. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.J.; Sun, H.; Gao, L. Enhanced normal-incidence Goos-Hänchen effects induced by magnetic surface plasmons in magneto-optical metamaterials. Opt. Express 2018, 26, 3956–3973. [Google Scholar] [CrossRef]
- Solookinejad, G.; Jabbari, M.; Nafar, M.; Sangachin, E.A. Enhancement of Goos–Hänchen shifts due to spontaneously generated coherence in a four-level Rydberg atom. Laser Phys. 2019, 29, 065203. [Google Scholar] [CrossRef]
- Tang, T.; Li, J.; Luo, L.; Shen, J.; Li, C.; Qin, J.; Bi, L.; Hou, J. Weak measurement of magneto-optical Goos-Hänchen effect. Opt. Express 2019, 27, 17638–17647. [Google Scholar] [CrossRef]
- Saito, H.; Neo, Y.; Matsumoto, T.; Tomita, M. Giant and highly reflective Goos-Hänchen shift in a metal-dielectric multilayer Fano structure. Opt. Express 2019, 27, 28629–28639. [Google Scholar] [CrossRef]
- Malik, A.; Chaung, Y.-L.; Abbas, M. Ziauddin Giant negative and positive Goos–Hänchen shifts via Doppler broadening effect. Laser Phys. 2019, 29, 075201. [Google Scholar] [CrossRef]
- Stockschläder, P.; Kreismann, J.; Hentschel, M. Curvature dependence of semiclassical corrections to ray optics: How Goos-Hänchen shift and Fresnel filtering deviate from the planar case result. EPL Europhys. Lett. 2014, 107, 64001. [Google Scholar] [CrossRef]
- Yin, X.; Hesselink, L.; Liu, Z.; Fang, N.X.; Zhang, X. Large positive and negative lateral optical beam displacements due to surface plasmon resonance. Appl. Phys. Lett. 2004, 85, 372–374. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Yang, H.; Chen, X.; Yi, Z.; Yao, W.; Chen, J.; Yi, Y.; Wu, P. Ultra-wideband solar absorber based on refractory titanium metal. Renew Energy 2020, 158, 227–235. [Google Scholar] [CrossRef]
- Zhao, F.; Chen, X.; Yi, Z.; Qin, F.; Tang, Y.; Yao, W.; Zhou, Z.; Yi, Y. Study on the solar energy absorption of hybrid solar cells with trapezoid-pyramidal structure based PEDOT: PSS/c-Ge. Sol. Energy 2020, 204, 635–643. [Google Scholar] [CrossRef]
- Li, J.; Shen, C.; Díaz-Rubio, A.; Tretyakov, S.A.; Cummer, S.A. Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts. Nat. Commun. 2018, 9, 1342. [Google Scholar] [CrossRef]
- Wei, L.; Picardi, M.F.; Kingsley-Smith, J.; Zayats, A.V.; Rodríguez-Fortuño, F.J. Directional scattering from particles under evanescent wave illumination: The role of reactive power. Opt. Lett. 2018, 43, 3393–3396. [Google Scholar] [CrossRef] [Green Version]
- You, Q.; Zhu, J.; Guo, J.; Wu, L.-M.; Dai, X.; Xiang, Y.-J. Giant Goos–Hänchen shifts of waveguide coupled long-range surface plasmon resonance mode. Chin. Phys. B 2018, 27, 34–38. [Google Scholar] [CrossRef]
- Kang, Y.; Gao, P.; Liu, H.; Zhang, J. Large Tunable Lateral Shift from Guided Wave Surface Plasmon Resonance. Plasmonics 2019, 14, 1289–1293. [Google Scholar] [CrossRef]
- Guo, X.; Liu, X.; Zhu, W.; Gao, M.; Long, W.; Yu, J.; Zheng, H.; Guan, H.; Luo, Y.; Lu, H.; et al. Surface plasmon resonance enhanced Goos–Hänchen and Imbert–Fedorov shifts of Laguerre–Gaussian beams. Opt. Commun. 2019, 445, 5–9. [Google Scholar] [CrossRef]
- Lian, J.; Zhang, D.; Hong, R.; Yan, T.; Lv, T.; Zhang, D. Broadband absorption tailoring of SiO2/Cu/ITO arrays based on hybrid coupled resonance mode. Nanomaterials 2019, 9, 852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szunerits, S.; Castel, X.; Boukherroub, R. Surface Plasmon Resonance Investigation of Silver and Gold Films Coated with Thin Indium Tin Oxide Layers: Influence on Stability and Sensitivity. J. Phys. Chem. C 2008, 112, 15813–15817. [Google Scholar] [CrossRef]
- Jiao, X.; Cai, Y.; Wang, Z. Goos-Hanchen and Imbert-Fedorov shifts of a laser beam reflected from ITO under complex fields. Opt. Commun. 2020, 457, 124712. [Google Scholar] [CrossRef]
- Hlubina, P.; Urbancova, P.; Pudis, D.; Goraus, M.; Jandura, D.; Ciprian, D. Ultrahigh-sensitive plasmonic sensing of gas using a two-dimensional dielectric grating. Opt. Lett. 2019, 44, 5602–5605. [Google Scholar] [CrossRef]
- Jia, A.-Q.; Sheng, M.-M.; Che, G.; Xu, C.; Zhang, Q.-F. Isolation and Structures of One- and Two-Dimensional High-Nuclearity Silver (I) Clusters from a Silver Propane-2-thiolate Chain. J. Clust. Sci. 2019, 1–8. [Google Scholar] [CrossRef]
- Han, L.; Wu, C. A Phase Sensitivity-Enhanced Surface Plasmon Resonance Biosensor Based on ITO-Graphene Hybrid Structure. Plasmonics 2018, 14, 901–906. [Google Scholar] [CrossRef]
- Maharana, P.K.; Srivastava, T.; Jha, R. On the Performance of Highly Sensitive and Accurate Graphene-on-Aluminum and Silicon-Based SPR Biosensor for Visible and Near Infrared. Plasmonics 2014, 9, 1113–1120. [Google Scholar] [CrossRef]
- Wu, L.; Guo, J.; Wang, Q.; Lu, S.; Dai, X.; Xiangb, Y.; Fan, D. Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuators B Chem. 2017, 249, 542–548. [Google Scholar] [CrossRef]
- Srivastava, T.; Jha, R. Black Phosphorus: A New Platform for Gaseous Sensing Based on Surface Plasmon Resonance. IEEE Photon Technol. Lett. 2018, 30, 319–322. [Google Scholar] [CrossRef]
- Ouyang, Q.; Zeng, S.; Jiang, L.; Hong, L.; Xu, G.; Dinh, X.Q.; Qian, J.; He, S.; Qu, J.; Coquet, P.; et al. Sensitivity enhancement of transition metaldichalcogenides/silicon nanostructure-based surface plasmon resonancebiosensor. Sci. Rep. 2016, 6, 28190. [Google Scholar] [CrossRef]
- Han, L.; Chen, Z.; Huang, T.; Ding, H.; Wu, C. Sensitivity Enhancement of Ag-ITO-TMDCs-Graphene Nanostructure Based on Surface Plasmon Resonance Biosensors. Plasmonics 2019, 15, 693–701. [Google Scholar] [CrossRef]
- Fan, Y.; Tu, L.; Zhang, F.; Fu, Q.; Zhang, Z.; Wei, Z.; Li, H. Broadband Terahertz Absorption in Graphene-Embedded Photonic Crystals. Plasmonics 2017, 13, 1153–1158. [Google Scholar] [CrossRef]
- Luo, L.; Tang, T.; Shen, J.; Li, C. Electro-optic and magneto-optic modulations of Goos-Hänchen effect in double graphene coating waveguide with sensing applications. J. Magn. Magn. Mater. 2019, 491, 165524. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, S.; Ding, Y.; Min, L.; Luo, Z.; Luo, Z. Precise control of positive and negative Goos-Hänchen shifts in graphene. Carbon 2019, 149, 604–608. [Google Scholar] [CrossRef]
- Zhao, N.; Ke, S.; Liu, Q.; Wang, B.; Lu, P. Giant Goos-Hänchen shifts in non-Hermitian dielectric multilayers incorporated with graphene. Opt. Express 2018, 26, 2817–2828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, Q.; Shan, Y.; Gan, S.; Zhao, Y.; Dai, X.; Xiangb, Y. Giant and controllable Goos-Hänchen shifts based on surface plasmon resonance with graphene-MoS2 heterostructure. Opt. Mater. Express 2018, 8, 3036–3048. [Google Scholar] [CrossRef]
- Han, L.; Pan, J.; Wu, C.; Li, K.; Ding, H.; Ji, Q.; Yang, M.; Wang, J.; Zhang, H.; Huang, T. Giant Goos-Hänchen Shifts in Au-ITO-TMDCs-Graphene Heterostructure and Its Potential for High Performance Sensor. Sensors 2020, 20, 1028. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Tománek, D. Semiconducting Layered Blue Phosphorus: A Computational Study. Phys. Rev. Lett. 2014, 112, 176802. [Google Scholar] [CrossRef]
- Guan, J.; Zhu, Z.; Tománek, D. Phase Coexistence and Metal-Insulator Transition in Few-Layer Phosphorene: A Computational Study. Phys. Rev. Lett. 2014, 113, 046804. [Google Scholar] [CrossRef] [Green Version]
- Peng, Q.; Wang, Z.; Sa, B.; Wu, B.; Sun, Z. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Sci. Rep. 2016, 6, 31994. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Prajapati, Y.K. Performance Analysis of Silicon and Blue Phosphorene/MoS2 Hetero-Structure Based SPR Sensor. Photon Sens. 2019, 9, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.K.; Pandey, A.K. Blue Phosphorene/MoS2Heterostructure Based SPR Sensor with Enhanced Sensitivity. IEEE Photon Technol. Lett. 2018, 30, 595–598. [Google Scholar] [CrossRef]
- Zeng, S.; Hu, S.; Xia, J.; Anderson, T.; Dinh, X.Q.; Meng, X.-M.; Coquet, P.; Yong, K. Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens. Actuators B Chem. 2015, 207, 801–810. [Google Scholar] [CrossRef]
- Han, L.; He, X.; Ge, L.; Huang, T.; Ding, H.; Wu, C. Comprehensive study of performance SPR biosensor based on metal-ITO-graphene /TMDCs hybrid multilayer. Plasmonics 2019, 14, 2021–2030. [Google Scholar] [CrossRef]
- Gupta, B.D.; Sharma, A.K. Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: A theoretical study. Sens. Actuators B Chem. 2005, 107, 40–46. [Google Scholar] [CrossRef]
- Han, L.; Ding, H.; Huang, T.; Wu, X.; Chen, B.; Ren, K.; Fu, S. Broadband Optical Reflection Modulator in Indium-Tin-Oxide-Filled Hybrid Plasmonic Waveguide with High Modulation Depth. Plasmonics 2017, 13, 1309–1314. [Google Scholar] [CrossRef]
- Yue, C.; Lang, Y.; Zhou, X.; Liu, Q. Sensitivity enhancement of an SPR biosensor with a graphene and blue phosphorene/transition metal dichalcogenides hybrid nanostructure. Appl. Opt. 2019, 58, 9411–9420. [Google Scholar] [CrossRef]
- Bruna, M.; Borini, S. Optical constants of graphene layers in the visible range. Appl. Phys. Lett. 2009, 94, 31901. [Google Scholar] [CrossRef]
- Gan, C.H. Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection. Appl. Phys. Lett. 2012, 101, 111609. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Pradhan, M. Goos–Hänchen shift for Gaussian beams impinging on monolayer-MoS2-coated surfaces. J. Opt. Soc. Am. B 2018, 35, 1956–1962. [Google Scholar] [CrossRef]
- Zheng, Z.; Lu, F.; Jiang, L.; Jin, X.; Dai, X.; Xiang, Y. Enhanced and controllable Goos–Hänchen shift with graphene surface plasmon in the terahertz regime. Opt. Commun. 2019, 452, 227–232. [Google Scholar] [CrossRef]
BlueP/TMDCs and Graphene | Monolayer (nm) | RI |
---|---|---|
BlueP/WS2 | 0.75 | 2.48 + 0.170i |
BlueP/MoS2 | 0.75 | 2.81 + 0.320i |
BlueP/MoSe2 | 0.78 | 2.77 + 0.350i |
BlueP/WSe2 | 0.78 | 2.68 + 0.220i |
graphene | 0.34 | 3.00 + 1.149i |
BlueP/TMDCs | Monolayer | Bilayer | 3 Layers | 4 Layers | 5 Layers |
---|---|---|---|---|---|
BlueP/MoS2 | 77.31 | 111.6 | 241.2 | −662.2 | −139.5 |
BlueP/WS2 | 65.69 | 70.32 | 76.23 | 83.68 | 92.83 |
BlueP/MoSe2 | 82.42 | 141.5 | 1188 | −151.6 | −65.77 |
BlueP/WSe2 | 68.57 | 78.32 | 93.58 | 119.1 | 166.3 |
BlueP/TMDCs | Graphene (Monolayer) | ||
---|---|---|---|
GH Shift (λ) | Resonance Angle (θ) | ||
BlueP/MoS2 | bilayer | −385.8 | 56.48° |
BlueP/WS2 | 4 layers | −2361 | 57.23° |
BlueP/MoSe2 | monolayer | 456.9 | 55.96° |
BlueP/WSe2 | 3 layers | −665.5 | 56.99° |
Graphene | BlueP/TMDCs (Monolayer) | ||||
---|---|---|---|---|---|
BlueP/MoS2 | BlueP/WS2 | BlueP/MoSe2 | BlueP/WSe2 | ||
Graphene | monolayer | 315.6 | 164.1 | 456.9 | 193.1 |
bilayer | −112.2 | −189.3 | −205.1 | −153.6 | |
3 layers | −42.44 | −52.23 | −75.18 | −48.25 | |
4 layers | −24.35 | −27.95 | −43.27 | −26.49 | |
5 layers | −16.19 | −18.02 | −29.2 | −17.27 |
Type of BlueP/TMDCs and Graphene | Graphene | |||||
---|---|---|---|---|---|---|
Monolayer | Bilayer | 3 Layers | 4 LAYERS | 5 layers | ||
BlueP/MoS2 | bilayer | −385.8 | −59.85 | −29.7 | −18.58 | −12.9 |
BlueP/WS2 | 4 layers | −2361 | −64.34 | −29.65 | −18.09 | −12.4 |
BlueP/WSe2 | 3 layers | −665.5 | −60.99 | −29.16 | −18.01 | −12.43 |
BlueP/MoSe2 | monolayer | 456.9 | −205.1 | −75.18 | −43.27 | −29.2 |
Structure | ΔGH (λ) | ∆n7 | S’P(λ/RIU) |
---|---|---|---|
Structure I | 10.74 | 0.002 | 5370 |
Structure II | 22.4 | 0.002 | 11,200 |
Structure III | 25.63 | 0.002 | 12,815 |
Structure IV | 82.73 | 0.002 | 41,365 |
Structure V | 125.17 | 0.002 | 62,585 |
Structure VI | 2767 | 0.0001 | 2.767 × 107 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.; Hu, Z.; Pan, J.; Huang, T.; Luo, D. High-Sensitivity Goos-Hänchen Shifts Sensor Based on BlueP-TMDCs-Graphene Heterostructure. Sensors 2020, 20, 3605. https://doi.org/10.3390/s20123605
Han L, Hu Z, Pan J, Huang T, Luo D. High-Sensitivity Goos-Hänchen Shifts Sensor Based on BlueP-TMDCs-Graphene Heterostructure. Sensors. 2020; 20(12):3605. https://doi.org/10.3390/s20123605
Chicago/Turabian StyleHan, Lei, Zhimin Hu, Jianxing Pan, Tianye Huang, and Dapeng Luo. 2020. "High-Sensitivity Goos-Hänchen Shifts Sensor Based on BlueP-TMDCs-Graphene Heterostructure" Sensors 20, no. 12: 3605. https://doi.org/10.3390/s20123605
APA StyleHan, L., Hu, Z., Pan, J., Huang, T., & Luo, D. (2020). High-Sensitivity Goos-Hänchen Shifts Sensor Based on BlueP-TMDCs-Graphene Heterostructure. Sensors, 20(12), 3605. https://doi.org/10.3390/s20123605