An Infrared Defect Sizing Method Based on Enhanced Phase Images
Abstract
:1. Introduction
2. Methodology
2.1. Fourier Phase Analysis
2.2. Enhancement of Thermal Phase
3. Experiments
4. Results and Discussion
4.1. Comparison of Thermal Signal Reconstruction Methods
4.2. The determination of Parameters in the Proposed Method
4.3. The Effect of Sampling Rate
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, J. Analysis of data processing methods for pulsed thermal imaging characterisation of delaminations. Quant. Infrared Thermogr. J. 2013, 10, 9–25. [Google Scholar] [CrossRef]
- Maierhofer, C.; Röllig, M.; Gower, M.; Lodeiro, M.; Baker, G.; Monte, C.; Adibekyan, A.; Gutschwager, B.; Knazowicka, L.; Blahut, A. Evaluation of different techniques of active thermography for quantification of artificial defects in fiber-reinforced composites using thermal and phase contrast data analysis. Int. J. Thermophys. 2018, 39, 1–37. [Google Scholar] [CrossRef]
- Ciampa, F.; Mahmoodi, P.; Pinto, F.; Meo, M. Recent advances in active infrared thermography for non-destructive testing of aerospace components. Sensors 2018, 18, 609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vavilov, V.P.; Burleigh, D.D. Review of pulsed thermal NDT: Physical principles, theory and data processing. NDT E Int. 2015, 73, 28–52. [Google Scholar] [CrossRef]
- Almond, D.P.; Angioni, S.L.; Pickering, S.G. Long pulse excitation thermographic non-destructive evaluation. Ndt. E. Int. 2017, 87, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Bu, C.; Liu, G.; Zhang, X.; Tang, Q. Debonding defects detection of FMLs based on long pulsed infrared thermography technique. Infrared Phys. Technol. 2020, 104, 103074. [Google Scholar] [CrossRef]
- Sun, W. Determination of elastic moduli of composite medium containing bimaterial matrix and non-uniform inclusion concentrations. Appl. Math. Mech. 2017, 38, 15–28. [Google Scholar] [CrossRef]
- Bu, C.; Tang, Q.; Liu, Y.; Yu, F.; Mei, C.; Zhao, Y. Quantitative detection of thermal barrier coating thickness based on simulated annealing algorithm using pulsed infrared thermography technology. Appl. Therm. Eng. 2016, 99, 751–755. [Google Scholar] [CrossRef]
- Bu, C.; Sun, Z.; Tang, Q.; Liu, Y.; Mei, C. Thermography sequence processing and defect edge identification of tbc structure debonding defects detection using long-pulsed infrared wave non-destructive testing technology. Russ. J. Nondestruct. Test. 2019, 55, 80–87. [Google Scholar] [CrossRef]
- Yang, W.Y.; Zhang, S.Q.; Li, J.L.; Ma, Y.L. Interface crack problems for mode II of double dissimilar orthotropic composite materials. Appl. Math. Mech. 2009, 30, 585–594. [Google Scholar] [CrossRef]
- Álvarez-Borges, F.E.; Bravo-Castillero, J.; Cruz, M.E.; Guinovart-Díaz, R.; Pérez-Fernández, L.D.; Rodríguez-Ramos, R.; Sabina, F.J. Reiterated homogenization of a laminate with imperfect contact: Gain-enhancement of effective properties. Appl. Math. Mech. 2018, 39, 1119–1146. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, G.Y.; Meo, M.; Ciampa, F. Image processing based quantitative damage evaluation in composites with long pulse thermography. NDT E Int. 2018, 99, 93–104. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, H.; Fernandes, H.; Maldague, X. Quantitative evaluation of pulsed thermography, lock-in thermography and vibrothermography on foreign object defect (FOD) in CFRP. Sensors 2016, 16, 743. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Gao, B.; Tian, G.Y.; Woo, W.L.; Berthiau, G. Impact damage detection and identification using eddy current pulsed thermography through integration of PCA and ICA. IEEE Sens. J. 2014, 14, 1655–1663. [Google Scholar] [CrossRef]
- Roche, J.M.; Balageas, D.L. Common tools for quantitative pulse and step-heating thermography-Part II: Experimental investigation. Quant. Infrared Thermogr. J. 2015, 12, 1–23. [Google Scholar] [CrossRef]
- D’Accardi, E.; Palumbo, D.; Tamborrino, R.; Galietti, U. A quantitative comparison among different algorithms for defects detection on aluminum with the pulsed thermography technique. Metals 2018, 8, 859. [Google Scholar] [CrossRef] [Green Version]
- Kalyanavalli, V.; Ramadhas, T.K.A.; Sastikumar, D. Long pulse thermography investigations of basalt fiber reinforced composite. NDT E Int. 2018, 100, 84–91. [Google Scholar] [CrossRef]
- Chiwu, B.; Qingju, T.; Junyan, L.; Yang, W. Inspection on CFRP sheet with subsurface defects using pulsed thermographic technique. Infrared Phys. Technol. 2014, 65, 117–121. [Google Scholar] [CrossRef]
- Gu, B.; Li, W.; Zhu, M.; Wang, M. Local edge-preserving multiscale decomposition for high dynamic range image tone mapping. IEEE Trans. Image Process. 2013, 22, 70–79. [Google Scholar] [CrossRef]
- El-Khamy, S.E.; Hadhoud, M.M.; Dessouky, M.I.; Salam, B.M.; Abd El-Samie, F.E. Blind multichannel reconstruction of high-resolution images using wavelet fusion. Appl. Opt. 2005, 44, 7349–7356. [Google Scholar] [CrossRef]
- Usamentiaga, R.; Ibarra-Castanedo, C.; Maldague, X. More than fifty shades of grey: Quantitative characterization of defects and interpretation using SNR and CNR. J. Nondestruct. Eval. 2018, 37, 1–17. [Google Scholar] [CrossRef]
- Kang, B.; Jeon, C.; Han, D.K.; Ko, H. Adaptive height-modified histogram equalization and chroma correction in YCbCr color space for fast backlight image compensation. Image Vis. Comput. 2011, 28, 45–54. [Google Scholar] [CrossRef]
Flaw | Measured (mm) | Designed (mm) | Error (%) |
---|---|---|---|
1 | 5.2 | 5 | 5.2 |
2 | 9.9 | 10 | 1.0 |
3 | 15.2 | 15 | 1.3 |
4 | 20.5 | 20 | 2.5 |
Average = 2.5% |
Method | SNR (dB) | Computational Time (s) |
---|---|---|
TSR+1D | 2.69 | 70.357 |
TSR+2D | 7.78 | 67.073 |
PPT | 3.27 | 18.510 |
PCA | 9.13 | 96.881 |
Our | 13.33 | 24.548 |
M CPP Index | Memory Consumption (MB) | Computational Time (s) | |
---|---|---|---|
10bit | 18.97 | 200 | 20.346 |
16bit | 66.01 | 320 | 24.548 |
20bit | 70.23 | 400 | 33.447 |
ɛ | w | CPP Index |
---|---|---|
0.1 | 3×3 | 40.75 |
1000 | 3×3 | 63.70 |
10,000 | 3×3 | 66.01 |
0.1 | 11×11 | 11.86 |
1000 | 11×11 | 12.09 |
10,000 | 11×11 | 11.25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Su, Z.; Mao, S.; Zhang, D. An Infrared Defect Sizing Method Based on Enhanced Phase Images. Sensors 2020, 20, 3626. https://doi.org/10.3390/s20133626
Wei Y, Su Z, Mao S, Zhang D. An Infrared Defect Sizing Method Based on Enhanced Phase Images. Sensors. 2020; 20(13):3626. https://doi.org/10.3390/s20133626
Chicago/Turabian StyleWei, Yanjie, Zhilong Su, Shuangshuang Mao, and Dongsheng Zhang. 2020. "An Infrared Defect Sizing Method Based on Enhanced Phase Images" Sensors 20, no. 13: 3626. https://doi.org/10.3390/s20133626
APA StyleWei, Y., Su, Z., Mao, S., & Zhang, D. (2020). An Infrared Defect Sizing Method Based on Enhanced Phase Images. Sensors, 20(13), 3626. https://doi.org/10.3390/s20133626