Simultaneous Estimation of Vehicle Roll and Sideslip Angles through a Deep Learning Approach
Abstract
:1. Introduction
- (a)
- to design distributed deep learning systems to improve training times for more complex networks and massive data sets;
- (b)
- to determine how to apply deep learning in other areas of automobile control such as lateral stability [24]; and
- (c)
- it is necessary to assess that the fusion of data coming from low-cost devices and estimations provided by deep machine learning algorithms can fulfill the reliability and appropriateness requirements for using these technologies to improve overall vehicular safety.
2. Methodology
- Data set with repeatable simulated maneuvers with a complex vehicular model (van).
- Data set with information logged from real driving scenarios.
- Deep Learning predictor model, tested against the first data set.
- Validation of the Deep Learning Network using the second data set.
2.1. General Scheme
2.1.1. Deep Learning Model to Accurately Predict Roll and Sideslip Angles
- Determine the goals, including what error metric to use, and the expected value for this metric. The problem should drive these goals and error metrics that the application has to solve.
- Establish an end-to-end working pipeline as soon as possible, including the estimation of the appropriate performance metrics.
- Instrument the system adequately to track bottlenecks or issues in the model, such as overfitting, underfitting, or defective data.
- Perform repeatedly incremental changes such as increasing the data set entries, adjusting hyperparameters, or changing algorithms, based on specific findings from the previous instrumentation.
2.1.2. Model Dissemination and Extension
3. Datasets
4. Results and Discussion
- Vbox 3i dual antenna data logger from Racelogic.
- An IMU (Inertial Measurement Unit) sensor from Racelogic mounted near the center of gravity (COG) of the vehicle to provide measurements of the roll and yaw rates and longitudinal and lateral accelerations.
- Two GPS antennas from Racelogic to provide measurements of the roll and sideslip angles (Ground Truth). The dual antennas must be positioned transverse to the direction of movement to precisely determine the roll angle.
- Steering angle sensor MSW 250 Nm from Kistler.
5. Conclusions
Future Work
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ABS | Anti-Blocking System |
ANN | Artificial Neural Network |
CoG | Center of Gravity |
DNN | Deep Neural Network |
ESC | Electronic Stability Controllers |
GPS | Global Positioning System |
IMU | Inertial Measurement Unit |
LSTM | Long Short-Term Memory |
MLP | Multilayer Perceptron |
MSE | Mean Squared Error |
NLP | Natural Language Processing |
RMSE | Root-Mean-Square Error |
RNN | Recurrent Neural Networks |
References
- World Health Organization. Global Status Report on Road Safety 2018: Summary; Technical Documents; WHO: Geneva, Switzerland, 2018; Available online: https://apps.who.int/iris/handle/10665/277370 (accessed on 29 June 2020).
- Saleh, L.; Chevrel, P.; Claveau, F.; Lafay, J.; Mars, F. Shared Steering Control Between a Driver and an Automation: Stability in the Presence of Driver Behavior Uncertainty. IEEE Trans. Intell. Transp. Syst. 2013, 14, 974–983. [Google Scholar] [CrossRef]
- Xiong, L.; Xia, X.; Lu, Y.; Liu, W.; Gao, L.; Song, S.; Han, Y.; Yu, Z. IMU-Based Automated Vehicle Slip Angle and Attitude Estimation Aided by Vehicle Dynamics. Sensors 2019, 19, 1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzman, J.G.; Gonzalez, L.P.; Redondo, J.P.; Sanchez, S.S.; Boada, B.L. Design of Low-Cost Vehicle Roll Angle Estimator Based on Kalman Filters and an IoT Architecture. Sensors 2018, 18, 1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chindamo, D.; Lenzo, B.; Gadola, M. On the vehicle sideslip angle estimation: A literature review of methods, models, and innovations. Appl. Sci. 2018, 8, 355. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Cao, D.; Chen, H.; Lv, C.; Wang, H.; Yang, S. Vehicle dynamic state estimation: State of the art schemes and perspectives. IEEE/CAA J. Autom. Sin. 2018, 5, 418–431. [Google Scholar] [CrossRef]
- Nam, K.; Oh, S.; Fujimoto, H.; Hori, Y. Estimation of sideslip and roll angles of electric vehicles using lateral tire force sensors through RLS and Kalman filter approaches. IEEE Trans. Ind. Electron. 2012, 60, 988–1000. [Google Scholar] [CrossRef]
- Jin, X.; Yin, G.; Chen, N. Advanced Estimation Techniques for Vehicle System Dynamic State: A Survey. Sensors 2019, 19, 4289. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.C.; Hsieh, F.C. Sideslip angle estimation using extended Kalman filter. Veh. Syst. Dyn. 2008, 46, 353–364. [Google Scholar] [CrossRef]
- Li, L.; Jia, G.; Ran, X.; Song, J.; Wu, K. A variable structure extended Kalman filter for vehicle sideslip angle estimation on a low friction road. Veh. Syst. Dyn. 2014, 52, 280–308. [Google Scholar] [CrossRef]
- Liu, Y.H.; Li, T.; Yang, Y.Y.; Ji, X.W.; Wu, J. Estimation of tire-road friction coefficient based on combined APF-IEKF and iteration algorithm. Mech. Syst. Sig. Process. 2017, 88, 25–35. [Google Scholar] [CrossRef]
- Rath, J.J.; Veluvolu, K.C.; Defoort, M.; Soh, Y.C. Higher-order sliding mode observer for estimation of tyre friction in ground vehicles. IET Control Theory Appl. 2014, 8, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Cheli, F.; Braghin, F.; Brusarosco, M.; Mancosu, F.; Sabbioni, E. Design and testing of an innovative measurement device for tyre–road contact forces. Mech. Syst. Sig. Process. 2011, 25, 1956–1972. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Q.; Qiu, J. Robust H∞ filtering for vehicle sideslip angle estimation with sampled-data measurements. Trans. Inst. Meas. Control 2019, 39, 1059–1070. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, X.; Wang, J.; Karimi, H.R. Robust energy-to-peak sideslip angle estimation with applications to ground vehicles. Mechatronics 2015, 30, 338–347. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, Z. Vehicle Velocity and Roll Angle Estimation with Road and Friction Adaptation for Four-Wheel Independent Drive Electric Vehicle. Math. Prob. Eng. 2014. [Google Scholar] [CrossRef]
- Boada, B.; Boada, M.; Diaz, V. Vehicle sideslip angle measurement based on sensor data fusion using an integrated ANFIS and an Unscented Kalman Filter algorithm. Mech. Syst. Sig. Process. 2016, 72–73, 832–845. [Google Scholar] [CrossRef] [Green Version]
- Boada, B.; Boada, M.; Vargas-Melendez, L.; Diaz, V. A robust observer based on H∞ filtering with parameter uncertainties combined with Neural Networks for estimation of vehicle roll angle. Mech. Syst. Sig. Process. 2018, 99, 611–623. [Google Scholar] [CrossRef] [Green Version]
- Kuutti, S.; Bowden, R.; Jin, Y.; Barber, P.; Fallah, S. A Survey of Deep Learning Applications to Autonomous Vehicle Control. IEEE Trans. Intell. Transp. Syst. 2020, 1–22. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, B.; Kang, C.M.; Chung, C.C.; Choi, J.W. Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1672–1678. [Google Scholar]
- Moujahid, A.; Tantaoui, M.E.; Hina, M.D.; Soukane, A.; Ortalda, A.; ElKhadimi, A.; Ramdane-Cherif, A. Machine Learning Techniques in ADAS: A Review. In Proceedings of the 2018 International Conference on Advances in Computing and Communication Engineering (ICACCE), Paris, France, 22–23 June 2018. [Google Scholar]
- Huval, B.; Wang, T.; Tandon, S.; Kiske, J.; Song, W.; Pazhayampallil, J.; Andriluka, M.; Rajpurkar, P.; Migimatsu, T.; Cheng-Yue, R.; et al. An Empirical Evaluation of Deep Learning on Highway Driving. arXiv, 2015; arXiv:1504.01716. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: London, UK, 2017; Available online: http://www.deeplearningbook.org (accessed on 29 June 2020).
- Marina, L.A.; Trasnea, B.; Grigorescu, S.M. A Multi-Platform Framework for Artificial Intelligence Engines in Automotive Systems. In Proceedings of the 2018 22nd International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 10–12 October 2018. [Google Scholar]
- Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; Liu, Y. Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 2018, 8, 6085. [Google Scholar] [CrossRef] [Green Version]
- Singh, J. Real world applications of neural networks in natural language processing. Int. J. Recent Trends Eng. Res. 2018, 4, 61–63. [Google Scholar] [CrossRef]
- Kim, D.; Min, K.; Kim, H.; Huh, K. Vehicle sideslip angle estimation using deep ensemble-based adaptive Kalman filter. Mech. Syst. Sig. Process. 2020, 144, 106862. [Google Scholar] [CrossRef]
- Zia, T.; Zahid, U. Long short-term memory recurrent neural network architectures for Urdu acoustic modeling. Int. J. Speech Technol. 2019, 22, 21–30. [Google Scholar] [CrossRef]
- Wang, P.; Qian, Y.; Soong, F.K.; He, L.; Zhao, H. Part-of-speech tagging with bidirectional long short-term memory recurrent neural network. arXiv, 2015; arXiv:1510.06168. [Google Scholar]
- Sak, H.; Senior, A.; Beaufays, F. Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In Proceedings of the Fifteenth Annual Conference of the International Speech Communication Association, Singapore, 14–18 September 2014. [Google Scholar]
- Hendry and Chen, R.C. Using Deep Learning to Predict User Rating on Imbalance Classification Data. IAENG Int. J. Comput. Sci. 2019, 46, 109–117. [Google Scholar]
- Fooshee, D.; Mood, A.; Gutman, E.; Tavakoli, M.; Urban, G.; Liu, F.; Huynh, N.; Van Vranken, D.; Baldi, P. Deep learning for chemical reaction prediction. Mol. Syst. Des. Eng. 2018, 3, 442–452. [Google Scholar] [CrossRef]
- Frank, L.R.; Ferreira, Y.M.; Julio, E.P.; Ferreira, F.H.C.; Dembogurski, B.J.; Silva, E.F. Multilayer Perceptron and Particle Swarm Optimization Applied to Traffic Flow Prediction on Smart Cities. In Proceedings of the International Conference on Computational Science and Its Applications, Saint Petersburg, Russia, 1–4 July 2019; pp. 35–47. [Google Scholar]
- Python Software Foundation. Python Language Reference. Version 3.7.4. Available online: https://docs.python.org/3/reference/ (accessed on 29 June 2020).
- Oliphant, T.E. A Guide to NumPy; Trelgol Publishing: North Charleston, SC, USA, 2006; Volume 1. [Google Scholar]
- McKinney, W. Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; Volume 445, pp. 51–56. [Google Scholar]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90. [Google Scholar] [CrossRef]
- Keras. Available online: https://keras.io (accessed on 21 June 2020).
- Merkel, D. Docker: Lightweight Linux Containers for Consistent Development and Deployment. Linux J. 2014. Available online: https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment (accessed on 29 June 2020).
- González, L.P. Hacia una Representación del Conocimiento Basada en la Percepción. Ph.D. Thesis, Computer Science and Technology Department, Universidad Carlos III de Madrid, Madrid, Spain, 2017. Available online: https://e-archivo.uc3m.es/handle/10016/24810 (accessed on 29 June 2020).
- Vargas-Meléndez, L.; Boada, B.L.; Boada, M.J.L.; Gauchía, A.; Díaz, V. A Sensor Fusion Method Based on an Integrated Neural Network and Kalman Filter for Vehicle Roll Angle Estimation. Sensors 2016, 16, 1400. [Google Scholar] [CrossRef] [Green Version]
- The HDF Group. Hierarchical Data Format Version 5. Available online: http://www.hdfgroup.org/HDF5 (accessed on 21 June 2020).
- Boada, B.L.; Garcia-Pozuelo, D.; Boada, M.J.L.; Diaz, V. A Constrained Dual Kalman Filter Based on pdf Truncation for Estimation of Vehicle Parameters and Road Bank Angle: Analysis and Experimental Validation. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1006–1016. [Google Scholar] [CrossRef] [Green Version]
- Boada, B.L.; Boada, M.J.L.; Zhang, H. Sensor Fusion Based on a Dual Kalman Filter for Estimation of Road Irregularities and Vehicle Mass Under Static and Dynamic Conditions. IEEE ASME Trans. Mechatron. 2019, 24, 1075–1086. [Google Scholar] [CrossRef] [Green Version]
- Shiddieqy, H.A.; Hariadi, F.I.; Adiono, T. Implementation of deep-learning based image classification on single board computer. In Proceedings of the 2017 International Symposium on Electronics and Smart Devices (ISESD), Yogyakarta, Indonesia, 17–19 October 2017; pp. 133–137. [Google Scholar]
- Morehead, A.; Ogden, L.; Magee, G.; Hosler, R.; White, B.; Mohler, G. Low Cost Gunshot Detection using Deep Learning on the Raspberry Pi. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 12–19 December 2019; pp. 3038–3044. [Google Scholar]
- Curtin, B.H.; Matthews, S.J. Deep Learning for Inexpensive Image Classification of Wildlife on the Raspberry Pi. In Proceedings of the 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), Vancouver, BC, Canada, 17–19 October 2019; pp. 82–87. [Google Scholar]
- Larabel, M. Initial Raspberry Pi 4 Performance Benchmarks—Phoronix. 2019. Available online: https://www.phoronix.com/scan.php?page=article&item=raspberry-pi4-benchmarks&num=5 (accessed on 29 June 2020).
Road Friction Coefficient | Maneuver | Speed (km/h) | Steering Angle (deg) |
---|---|---|---|
0.3 | Left DLC | 20, 30, 40, 50, 60, 70 | - |
0.5 | Left DLC | 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120 | - |
1 | Left DLC | 20, 30, 50, 60, 70, 80, 90, 100, 110, 120 | - |
0.3 | Right DLC | 20, 30, 40, 50, 60, 70 | |
0.5 | Right DLC | 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120 | - |
1 | Right DLC | 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120 | - |
0.3 | Left J-Turn | 20, 30, 40, 50, 60, 70, 80, 90, 100, 110 | 40, 60, 90, 100, 120 |
0.5 | and | ||
1 | Right J-turn | ||
0.5, 0.85 | Sine steering | 30 to 60 km/h in 30 s | ±60 (0.2 Hz, 0.5 Hz) |
0.5, 0.85 | Sine steering | 30 to 60 km/h in 30 s | ±90 (0.2 Hz, 0.5 Hz) |
Trucksim® Van Model | ||
---|---|---|
Roll Angle | Slip Angle | |
RMSE [°] | 0.018 | 0.033 |
Emax [°] | 1.05 | 1.39 |
Et [-] | 8.11 × 10−5 | 3.83 × 10−4 |
Trucksim® Van Model | Real Van | |||
---|---|---|---|---|
Roll Angle | Slip Angle | Roll Angle | Slip Angle | |
RMSE [°] | 0.018 | 0.024 | 1.19 | 1.40 |
Emax [°] | 0.11 | 0.094 | 3.5 | 6.36 |
Et [-] | 0.017 | 0.040 | 1.14 | 0.48 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González, L.P.; Sánchez, S.S.; Garcia-Guzman, J.; Boada, M.J.L.; Boada, B.L. Simultaneous Estimation of Vehicle Roll and Sideslip Angles through a Deep Learning Approach. Sensors 2020, 20, 3679. https://doi.org/10.3390/s20133679
González LP, Sánchez SS, Garcia-Guzman J, Boada MJL, Boada BL. Simultaneous Estimation of Vehicle Roll and Sideslip Angles through a Deep Learning Approach. Sensors. 2020; 20(13):3679. https://doi.org/10.3390/s20133679
Chicago/Turabian StyleGonzález, Lisardo Prieto, Susana Sanz Sánchez, Javier Garcia-Guzman, María Jesús L. Boada, and Beatriz L. Boada. 2020. "Simultaneous Estimation of Vehicle Roll and Sideslip Angles through a Deep Learning Approach" Sensors 20, no. 13: 3679. https://doi.org/10.3390/s20133679
APA StyleGonzález, L. P., Sánchez, S. S., Garcia-Guzman, J., Boada, M. J. L., & Boada, B. L. (2020). Simultaneous Estimation of Vehicle Roll and Sideslip Angles through a Deep Learning Approach. Sensors, 20(13), 3679. https://doi.org/10.3390/s20133679