Simultaneous Clamping and Cutting Force Measurements with Built-In Sensors
Abstract
:1. Introduction
2. Design and Fabrication of Force Sensing System
2.1. Fabrication of PZT Piezoelectric Sensors
2.2. Development of Vise with Built-In Sensors
3. Force Sensing System Analysis and Experimental Setup
3.1. Force Sensing System Analysis
3.2. Experimental Setup for Measuring Clamping and Cutting Forces
4. Experimental Results
4.1. Clamping and Cutting Forces
4.2. Fusing Signals from Strain Gauges and PZT Sensors
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tao, Z.J.; Kumar, A.S.; Nee, A.Y.C. Automatic generation of dynamic clamping forces for machining fixtures. Int. J. Prod. Res. 1999, 37, 2755–2776. [Google Scholar] [CrossRef]
- Deng, H.; Melkote, S.N. Determination of minimum clamping forces for dynamically stable fixturing. Int. J. Mach. Tools Manuf. 2006, 46, 847–857. [Google Scholar] [CrossRef]
- Black, J.T.; Kohser, R.A. DeGarmo’s Materials and Processes in Manufacturing, 13th ed.; Wiley: Hoboken, NJ, USA, 2019. [Google Scholar]
- Horie, T.; Sakai, S. Machine Vise with Clamping Force Detector. U.S. Patent No. 4,738,438, 19 April 1988. [Google Scholar]
- Chen, W.; Ni, L.; Xue, J. Deformation control through fixture layout design and clamping force optimization. Int. J. Adv. Manuf. Technol. 2007, 38, 860. [Google Scholar] [CrossRef]
- Liu, S.G.; Jin, Q. Fixture Clamping Force Analysis during Milling Process. Appl. Mech. Mater. 2013, 278, 385–388. [Google Scholar] [CrossRef]
- Mahmud, A.; Mayer, J.R.R.; Baron, L. Determining the minimum clamping force by cutting force simulation in aerospace fuselage pocket machining. Int. J. Adv. Manuf. Technol. 2015, 80, 1751–1758. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, C.; Jing, X.; Tian, G.; Li, G.; Liu, S.; Sun, Z. Influence of cutting and clamping forces on machining distortion of diesel engine connecting rod. Int. J. Adv. Manuf. Technol. 2018, 99, 897–910. [Google Scholar] [CrossRef]
- Sun, W.; Luo, M.; Zhang, D. Machining vibration monitoring based on dynamic clamping force measuring in thin-walled components milling. Int. J. Adv. Manuf. Technol. 2020, 107, 2211–2226. [Google Scholar] [CrossRef]
- Gupta, S. A sensor based fixturing system to determine the minimum required clamping force for machining operations. Master’s Thesis, The Ohio State University, Columbus, OH, USA, 1988. [Google Scholar]
- Kim, J.D.; Kim, D.S. Development of a combined-type tool dynamometer with a piezo-film accelerometer for an ultra-precision lathe. J. Mater. Process. Technol. 1997, 71, 360–366. [Google Scholar] [CrossRef]
- Mitsuishi, M.; Nagao, T.; Hatamura, Y.; Warisawa, S.I. Real-Time Machining State Detection Using Multiaxis Force Sensing. CIRP Ann. 1992, 41, 505–508. [Google Scholar] [CrossRef]
- Byrne, G.; Dornfeld, D.; Inasaki, I.; Ketteler, G.; König, W.; Teti, R. Tool Condition Monitoring (TCM) — The Status of Research and Industrial Application. CIRP Ann. 1995, 44, 541–567. [Google Scholar] [CrossRef]
- Malekian, M.; Park, S.S.; Jun, M.B.G. Tool wear monitoring of micro-milling operations. J. Mater. Process. Technol. 2009, 209, 4903–4914. [Google Scholar] [CrossRef]
- Scheffer, C.; Kratz, H.; Heyns, P.S.; Klocke, F. Development of a tool wear-monitoring system for hard turning. Int. J. Mach. Tools Manuf. 2003, 43, 973–985. [Google Scholar] [CrossRef]
- Budak, E.; Altintas, Y. Analytical Prediction of Chatter Stability in Milling—Part II: Application of the General Formulation to Common Milling Systems. J. Dyn. Syst. Meas. Control 1998, 120, 31–36. [Google Scholar] [CrossRef]
- Auchet, S.; Chevrier, P.; Lacour, M.; Lipinski, P. A new method of cutting force measurement based on command voltages of active electro-magnetic bearings. Int. J. Mach. Tools Manuf. 2004, 44, 1441–1449. [Google Scholar] [CrossRef]
- Teti, R.; Jemielniak, K.; O’Donnell, G.; Dornfeld, D. Advanced monitoring of machining operations. CIRP Ann. 2010, 59, 717–739. [Google Scholar] [CrossRef] [Green Version]
- Postel, M.; Aslan, D.; Wegener, K.; Altintas, Y. Monitoring of vibrations and cutting forces with spindle mounted vibration sensors. CIRP Ann. 2019, 68, 413–416. [Google Scholar] [CrossRef]
- Altintas, Y. Prediction of Cutting Forces and Tool Breakage in Milling from Feed Drive Current Measurements. J. Eng. Ind. 1992, 114, 386–392. [Google Scholar] [CrossRef]
- Kim, T.Y.; Woo, J.; Shin, D.; Kim, J. Indirect cutting force measurement in multi-axis simultaneous NC milling processes. Int. J. Mach. Tools Manuf. 1999, 39, 1717–1731. [Google Scholar] [CrossRef]
- Albrecht, A.; Park, S.S.; Altintas, Y.; Pritschow, G. High frequency bandwidth cutting force measurement in milling using capacitance displacement sensors. Int. J. Mach. Tools Manuf. 2005, 45, 993–1008. [Google Scholar] [CrossRef]
- Kim, J.H.; Chang, H.K.; Han, D.C.; Jang, D.Y.; Oh, S.I. Cutting Force Estimation by Measuring Spindle Displacement in Milling Process. CIRP Ann. 2005, 54, 67–70. [Google Scholar] [CrossRef]
- Jin, W.L.; Venuvinod, P.K.; Wang, X. An optical fibre sensor based cutting force measuring device. Int. J. Mach. Tools Manuf. 1995, 35, 877–883. [Google Scholar] [CrossRef]
- Park, S.S. High frequency bandwidth cutting force measurements in milling using the spindle integrated force sensor system. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2003. [Google Scholar]
- Shao, F. Design of a three-component force sensor for meso-milling applications. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2015. [Google Scholar]
- Korkut, İ. A dynamometer design and its construction for milling operation. Mater. Des. 2003, 24, 631–637. [Google Scholar] [CrossRef]
- Yaldız, S.; Ünsaçar, F.; Sağlam, H.; Işık, H. Design, development and testing of a four-component milling dynamometer for the measurement of cutting force and torque. Mech. Syst. Signal Process. 2007, 21, 1499–1511. [Google Scholar] [CrossRef]
- Physical and Piezoelectric Properties of APC Materials. Available online: https://www.americanpiezo.com/apc-materials/piezoelectric-properties.html (accessed on 20 May 2020).
- Firing Pressed PZT Components. Available online: https://www.americanpiezo.com/blog/ceramic-manufacturing-series-firing-pressed-pzt-components/ (accessed on 20 May 2020).
- Rahaman, M.N. Ceramic Processing and Sintering, 2nd ed.; CRC Press: Ohio, OH, USA, 2017. [Google Scholar]
- Sanati, M.; Sandwell, A.; Mostaghimi, H.; Park, S.S. Development of Nanocomposite-Based Strain Sensor with Piezoelectric and Piezoresistive Properties. Sensors 2018, 18, 3789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pharr, G.M. Measurement of mechanical properties by ultra-low load indentation. Mater. Sci. Eng. 1998, 253, 151–159. [Google Scholar] [CrossRef]
- Kala, S.; Panwar, V.; Panwar, L.; Sharma, S. Comparative Analysis of MEMS Piezoelectric Materials for the Design of a Piezotube-Type Pressure Sensor. In Intelligent Communication, Control and Devices, Advances in Intelligent Systems and Computing; Singh, R., Choudhury, S., Gehlot, A., Eds.; Springer: Singapore, 2018; Volume 624, pp. 1537–1549. [Google Scholar] [CrossRef]
- Simmons, G.; Wang, H. Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook; MIT Press: Cambridge, MA, USA, 1971. [Google Scholar]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Jiansirisomboon, S.; Songsiri, K.; Watcharapasorn, A.; Tunkasiri, T. Mechanical properties and crack growth behavior in poled ferroelectric PMN–PZT ceramics. Curr. Appl. Phys. 2006, 6, 299–302. [Google Scholar] [CrossRef]
- Bickford, J.H. An Introduction to the Design and Behavior of Bolted Joints, Revised and Expanded, 3rd ed.; CRC Press: Ohio, OH, USA, 2018. [Google Scholar]
- Force Sensors from Kistler. Available online: https://www.kistler.com/en/products/components/force-sensors/ (accessed on 20 May 2020).
- Altintas, Y.; Park, S.S. Dynamic Compensation of Spindle-Integrated Force Sensors. CIRP Ann. 2004, 53, 305–308. [Google Scholar] [CrossRef]
Constituents | Pb3O4 | TiO2 | ZrO2 | Ni and Nb |
---|---|---|---|---|
Weight fraction (wt%) | 70.40 | 9.14 | 9.26 | 11.20 |
Direction of the Load | Crosstalk | ||
---|---|---|---|
X-Axis Strain Gauge | Y-Axis Strain Gauge | Z-Axis Strain Gauge | |
X axis | - | 41% | −17% |
Y axis | −23% | - | <1% |
Z axis | 21% | <1% | - |
Strain Gauges | Sensitivity (µε/N) | Piezoelectric Sensors | Sensitivity (pC/N) |
---|---|---|---|
X-axis | 0.013 | X-axis left | 71 |
X-axis right | 137 | ||
Y-axis | 0.020 | Y-axis left | 125 |
Y-axis right | 125 | ||
Z-axis | 0.003 | Z-axis left | 67 |
Z-axis right | 100 |
Cutting Parameter | Value |
---|---|
Tool Diameter (mm) | 12.7 |
Tool Length (mm) | 3.7 |
Number of Flutes | 4 |
Tool Material | Tungsten carbide |
Depth of Cut (mm) | 1 |
Feed Rate (mm/s) | 10 |
Spindle Speed (rpm) | 1500 |
Workpiece Dimensions L × W × H (mm) | 120 × 50 × 50 |
Workpiece Material | AL 6061 T6511 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezvani, S.; Kim, C.-J.; Park, S.S.; Lee, J. Simultaneous Clamping and Cutting Force Measurements with Built-In Sensors. Sensors 2020, 20, 3736. https://doi.org/10.3390/s20133736
Rezvani S, Kim C-J, Park SS, Lee J. Simultaneous Clamping and Cutting Force Measurements with Built-In Sensors. Sensors. 2020; 20(13):3736. https://doi.org/10.3390/s20133736
Chicago/Turabian StyleRezvani, Sina, Chang-Ju Kim, Simon S. Park, and Jihyun Lee. 2020. "Simultaneous Clamping and Cutting Force Measurements with Built-In Sensors" Sensors 20, no. 13: 3736. https://doi.org/10.3390/s20133736
APA StyleRezvani, S., Kim, C. -J., Park, S. S., & Lee, J. (2020). Simultaneous Clamping and Cutting Force Measurements with Built-In Sensors. Sensors, 20(13), 3736. https://doi.org/10.3390/s20133736