On Data-Driven Sparse Sensing and Linear Estimation of Fluid Flows
Abstract
:1. Introduction
Contribution of This Work
2. Recovering Resolved Fields from Sparse Data Using Linear Estimation
2.1. Sparse Reconstruction Theory
2.2. Computation of Data-Driven Basis
Proper Orthogonal Decomposition (POD) Basis
2.3. ELM Autoencoder Basis
Algorithm 1: Gram–Schmidt Orthogonalization of ELM Basis (ELM-GS) |
input: dimensional non-orthogonal basis |
output: dimensional orthogonal basis |
3. Sensor Placement, Data Basis and Incoherence
4. Sparse Recovery Algorithm
4.1. Sequential Thresholding for Regularized Least Squares
Algorithm 2:-based algorithm: Sparse reconstruction with known basis, . |
input: Full data ensemble Incomplete data The mask vector The chosen sparsity |
output: Approximated full data |
5. Algorithmic Complexity
6. Sparse Recovery Use Cases
6.1. Low-Dimensional Cylinder Wake Flow
6.2. Global Sea Surface Temperature (SST) Data
7. Assessment of Dimensionality, Basis Structure and Hierarchy for Sparse Recovery
7.1. Dimensionality
7.2. Basis Structure
7.3. Basis Hierarchy
8. Assessment of Sparse Reconstruction Performance
8.1. Sparse Reconstruction Experiments, Analysis Methods and Error Quantifications
8.2. Basis Hierarchy in ELM-GS and POD Bases
8.3. Comparison of Sensor Placement Using ELM-GS and POD Bases
8.4. Sparse Recovery Error Dependence on Sensor Budget and System Dimension using ELM-GS and POD Bases
9. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jayaraman, B.; Brasseur, J. Transition in Atmospheric Boundary Layer Turbulence Structure from Neutral to Moderately Convective Stability States and Implications to Large-scale Rolls. arXiv 2018, arXiv:1807.03336. [Google Scholar]
- Jayaraman, B.; Brasseur, J. Transition in atmospheric turbulence structure from neutral to convective stability states. In Proceedings of the 32nd ASME Wind Energy Symposium, National Harbor, MD, USA, 13–17 January 2014; p. 0868. [Google Scholar]
- Davoudi, B.; Taheri, E.; Duraisamy, K.; Jayaraman, B.; Kolmanovsky, I. Quad-rotor flight simulation in realistic atmospheric conditions. AIAA J. 2020, 58, 1992–2004. [Google Scholar] [CrossRef]
- Allison, S.; Bai, H.; Jayaraman, B. Modeling trajectory performance of quadrotors under wind disturbances. In Proceedings of the 2018 AIAA Information Systems-AIAA Infotech@ Aerospace Meeting, Kissimmee, FL, USA, 8–12 January 2018; p. 1237. [Google Scholar]
- Allison, S.; Bai, H.; Jayaraman, B. Wind estimation using quadcopter motion: A machine learning approach. Aerosp. Sci. Technol. 2020, 98, 105699. [Google Scholar] [CrossRef] [Green Version]
- Allison, S.; Bai, H.; Jayaraman, B. Estimating wind velocity with a neural network using quadcopter trajectories. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019; p. 1596. [Google Scholar]
- Jayaraman, B.; Allison, S.; Bai, H. Estimation of Atmospheric Boundary Layer Turbulence Structure using Modelled Small UAS Dynamics within LES. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019; p. 1600. [Google Scholar]
- Holmes, P.; Lumley, J.L.; Berkooz, G.; Rowley, C.W. Turbulence, Coherent Structures, Dynamical Systems And Symmetry; Cambridge University Press: New York, NY, USA, 2012. [Google Scholar]
- Berkooz, G.; Holmes, P.; Lumley, J.L. The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 1993, 25, 539–575. [Google Scholar] [CrossRef]
- Taira, K.; Brunton, S.L.; Dawson, S.T.; Rowley, C.W.; Colonius, T.; McKeon, B.J.; Schmidt, O.T.; Gordeyev, S.; Theofilis, V.; Ukeiley, L.S. Modal analysis of fluid flows: An overview. AIAA J. 2017, 4013–4041. [Google Scholar] [CrossRef] [Green Version]
- Jayaraman, B.; Lu, C.; Whitman, J.; Chowdhary, G. Sparse Convolution-based Markov Models for Nonlinear Fluid Flows. arXiv 2018, arXiv:1803.08222. [Google Scholar]
- Jayaraman, B.; Lu, C.; Whitman, J.; Chowdhary, G. Sparse feature map-based Markov models for nonlinear fluid flows. Comput. Fluids 2019, 191, 104252. [Google Scholar] [CrossRef]
- Rowley, C.W.; Dawson, S.T. Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 2017, 49, 387–417. [Google Scholar] [CrossRef] [Green Version]
- Puligilla, S.C.; Jayaraman, B. Neural Networks as Globally Optimal Multilayer Convolution Architectures for Learning Fluid Flows. arXiv 2018, arXiv:1806.08234. [Google Scholar]
- Puligilla, S.C.; Jayaraman, B. Deep multilayer convolution frameworks for data-driven learning of fluid flow dynamics. In Proceedings of the 2018 Fluid Dynamics Conference, Atlanta, GA, USA, 25–29 June 2018; p. 3091. [Google Scholar]
- Lu, C.; Jayaraman, B. Data-driven modeling for nonlinear fluid flows. In Proceedings of the 23rd AIAA Computational Fluid Dynamics Conference, Denver, CO, USA, 5–9 June 2017; p. 3628. [Google Scholar]
- Brunton, S.L.; Proctor, J.L.; Tu, J.H.; Kutz, J.N. Compressed sensing and dynamic mode decomposition. J. Comput. Dyn. 2015, 2, 165–191. [Google Scholar] [CrossRef]
- Bai, Z.; Wimalajeewa, T.; Berger, Z.; Wang, G.; Glauser, M.; Varshney, P.K. Low-dimensional approach for reconstruction of airfoil data via compressive sensing. AIAA J. 2014, 53, 920–933. [Google Scholar] [CrossRef]
- Bright, I.; Lin, G.; Kutz, J.N. Compressive sensing based machine learning strategy for characterizing the flow around a cylinder with limited pressure measurements. Phys. Fluids 2013, 25, 127102. [Google Scholar] [CrossRef]
- Fukami, K.; Fukagata, K.; Taira, K. Super-resolution reconstruction of turbulent flows with machine learning. J. Fluid Mech. 2019, 870, 106–120. [Google Scholar] [CrossRef] [Green Version]
- Candès, E.J. Compressive sampling. In Proceedings of the International Congress of Mathematicians, Madrid, Spain, 22–30 August 2006; Volume 3, pp. 1433–1452. [Google Scholar]
- Tropp, J.A.; Gilbert, A.C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 2007, 53, 4655–4666. [Google Scholar] [CrossRef] [Green Version]
- Candès, E.J.; Wakin, M.B. An introduction to compressive sampling. IEEE Signal Process Mag. 2008, 25, 21–30. [Google Scholar] [CrossRef]
- Needell, D.; Tropp, J.A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 2009, 26, 301–321. [Google Scholar] [CrossRef] [Green Version]
- Bui-Thanh, T.; Damodaran, M.; Willcox, K. Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition. AIAA J. 2004, 42, 1505–1516. [Google Scholar] [CrossRef] [Green Version]
- Willcox, K. Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition. Comput. Fluids 2006, 35, 208–226. [Google Scholar] [CrossRef] [Green Version]
- Venturi, D.; Karniadakis, G.E. Gappy data and reconstruction procedures for flow past a cylinder. J. Fluid Mech. 2004, 519, 315–336. [Google Scholar] [CrossRef] [Green Version]
- Gunes, H.; Sirisup, S.; Karniadakis, G.E. Gappy data: To Krig or not to Krig? J. Comput. Phys. 2006, 212, 358–382. [Google Scholar] [CrossRef] [Green Version]
- Gunes, H.; Rist, U. On the use of kriging for enhanced data reconstruction in a separated transitional flat-plate boundary layer. Phys. Fluids 2008, 20, 104109. [Google Scholar] [CrossRef]
- Everson, R.; Sirovich, L. Karhunen–Loeve procedure for gappy data. JOSA A 1995, 12, 1657–1664. [Google Scholar] [CrossRef] [Green Version]
- Chaturantabut, S.; Sorensen, D.C. Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 2010, 32, 2737–2764. [Google Scholar] [CrossRef]
- Dimitriu, G.; Ştefănescu, R.; Navon, I.M. Comparative numerical analysis using reduced-order modeling strategies for nonlinear large-scale systems. J. Comput. Appl. Math. 2017, 310, 32–43. [Google Scholar] [CrossRef]
- Zimmermann, R.; Willcox, K. An accelerated greedy missing point estimation procedure. SIAM J. Sci. Comput. 2016, 38, A2827–A2850. [Google Scholar] [CrossRef] [Green Version]
- Saini, P.; Arndt, C.M.; Steinberg, A.M. Development and evaluation of gappy-POD as a data reconstruction technique for noisy PIV measurements in gas turbine combustors. Exp. Fluids 2016, 57, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Schmid, P.J. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 2010, 656, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Hanagud, S.; de Noyer, M.B.; Luo, H.; Henderson, D.; Nagaraja, K. Tail buffet alleviation of high-performance twin-tail aircraft using piezostack actuators. AIAA J. 2002, 40, 619–627. [Google Scholar] [CrossRef]
- Cohen, K.; Siegel, S.; McLaughlin, T. Sensor placement based on proper orthogonal decomposition modeling of a cylinder wake. In Proceedings of the 33rd AIAA Fluid Dynamics Conference and Exhibit, Orlando, FL, USA, 23–26 June 2003; p. 4259. [Google Scholar]
- Barrault, M.; Maday, Y.; Nguyen, N.C.; Patera, A.T. An ‘empirical interpolation’method: Application to efficient reduced-basis discretization of partial differential equations. C. R. Math. 2004, 339, 667–672. [Google Scholar] [CrossRef]
- Yildirim, B.; Chryssostomidis, C.; Karniadakis, G. Efficient sensor placement for ocean measurements using low-dimensional concepts. Ocean Model. 2009, 27, 160–173. [Google Scholar] [CrossRef] [Green Version]
- Manohar, K.; Brunton, B.W.; Kutz, J.N.; Brunton, S.L. Data-Driven Sparse Sensor Placement for Reconstruction: Demonstrating the Benefits of Exploiting Known Patterns. IEEE Control Syst. 2018, 38, 63–86. [Google Scholar]
- Sarrate, R.; Nejjari, F.; Blesa, J. Sensor placement for monitoring. In Real-Time Monitoring and Operational Control of Drinking-Water Systems; Springer: Glasgow, UK, 2017; pp. 153–173. [Google Scholar]
- Cugueró-Escofet, M.À.; Puig, V.; Quevedo, J. Optimal pressure sensor placement and assessment for leak location using a relaxed isolation index: Application to the Barcelona water network. Control Eng. Pract. 2017, 63, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sela, L.; Amin, S. Robust sensor placement for pipeline monitoring: Mixed integer and greedy optimization. Adv. Eng. Inform. 2018, 36, 55–63. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Huang, G.B.; Wang, D.H.; Lan, Y. Extreme learning machines: A survey. Int. J. Mach. Learn. Cybern. 2011, 2, 107–122. [Google Scholar] [CrossRef]
- Zhou, H.; Huang, G.B.; Lin, Z.; Wang, H.; Soh, Y.C. Stacked extreme learning machines. IEEE Trans. Cybern. 2015, 45, 2013–2025. [Google Scholar] [CrossRef] [PubMed]
- Al Mamun, S.; Lu, C.; Jayaraman, B. Extreme learning machines as encoders for sparse reconstruction. Fluids 2018, 3, 88. [Google Scholar] [CrossRef] [Green Version]
- Jayaraman, B.; Al Mamun, S.; Lu, C. Interplay of Sensor Quantity, Placement and System Dimension in POD-Based Sparse Reconstruction of Fluid Flows. Fluids 2019, 4, 109. [Google Scholar] [CrossRef] [Green Version]
- Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation; SIAM: Philadelphia, PA, USA, 2005; Volume 89. [Google Scholar]
- Arridge, S.R.; Schotland, J.C. Optical tomography: Forward and inverse problems. Inverse Prob. 2009, 25, 123010. [Google Scholar] [CrossRef]
- Tarantola, A.; Valette, B. Generalized nonlinear inverse problems solved using the least squares criterion. Rev. Geophys. 1982, 20, 219–232. [Google Scholar] [CrossRef]
- Neelamani, R. Inverse problems in image processing. Ph.D. Thesis, Rice University, Houston, TX, USA, July 2004. [Google Scholar]
- Mallet, S. A Wavelet Tour of Signal Processing; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Baraniuk, R.G. Compressive sensing [lecture notes]. IEEE Signal Process Mag. 2007, 24, 118–121. [Google Scholar] [CrossRef]
- Baraniuk, R.G.; Cevher, V.; Duarte, M.F.; Hegde, C. Model-based compressive sensing. IEEE Trans. Inf. Theory 2010, 56, 1982–2001. [Google Scholar] [CrossRef] [Green Version]
- Sarvotham, S.; Baron, D.; Wakin, M.; Duarte, M.F.; Baraniuk, R.G. Distributed compressed sensing of jointly sparse signals. In Proceedings of the Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 1 November 2005; pp. 1537–1541. [Google Scholar]
- Candès, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef] [Green Version]
- Candes, E.J.; Romberg, J.K.; Tao, T. Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 2006, 59, 1207–1223. [Google Scholar] [CrossRef] [Green Version]
- Candes, E.J.; Tao, T. Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. Inf. Theory 2006, 52, 5406–5425. [Google Scholar] [CrossRef] [Green Version]
- Candes, E.J.; Romberg, J.K. Signal recovery from random projections. In Computational Imaging III; International Society for Optics and Photonics, Electronic Imaging: San Jose, CA, USA, 2005; Volume 5674, pp. 76–87. [Google Scholar]
- Chen, S.S.; Donoho, D.L.; Saunders, M.A. Atomic decomposition by basis pursuit. SIAM Rev. 2001, 43, 129–159. [Google Scholar] [CrossRef] [Green Version]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 267–288. [Google Scholar] [CrossRef]
- Brunton, S.L.; Proctor, J.L.; Kutz, J.N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. USA 2016, 113, 3932–3937. [Google Scholar] [CrossRef] [Green Version]
- Sirovich, L. Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Math. 1987, 45, 561–571. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Soh, Y.C.; Jiang, C.; Wu, X. Compressed representation learning for fluid field reconstruction from sparse sensor observations. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 12–17 July 2015; pp. 1–6. [Google Scholar]
- Kasun, L.L.C.; Zhou, H.; Huang, G.B.; Vong, C.M. Representational learning with extreme learning machine for big data. IEEE Intell. Syst. 2013, 28, 31–34. [Google Scholar]
- Candes, E.; Romberg, J. Sparsity and incoherence in compressive sampling. Inverse Prob. 2007, 23, 969. [Google Scholar] [CrossRef] [Green Version]
- Csató, L.; Opper, M. Sparse on-line Gaussian processes. Neural Comput. 2002, 14, 641–668. [Google Scholar] [CrossRef] [PubMed]
- Kubrusly, C.S.; Malebranche, H. Sensors and controllers location in distributed systems—A survey. Automatica 1985, 21, 117–128. [Google Scholar] [CrossRef]
- Chaturantabut, S.; Sorensen, D.C. A state space error estimate for POD-DEIM nonlinear model reduction. SIAM J. Numer. Anal. 2012, 50, 46–63. [Google Scholar] [CrossRef]
- Trefethen, L.N.; Bau, D., III. Numerical Linear Algebra; SIAM: Philadelphia, PA, USA, 1997; Volume 50. [Google Scholar]
- Cantwell, C.D.; Moxey, D.; Comerford, A.; Bolis, A.; Rocco, G.; Mengaldo, G.; De Grazia, D.; Yakovlev, S.; Lombard, J.E.; Ekelschot, D.; et al. Nektar++: An open-source spectral/hp element framework. Comput. Phys. Commun. 2015, 192, 205–219. [Google Scholar] [CrossRef] [Green Version]
Case | Basis | |||
---|---|---|---|---|
POD | ELM | ELM-GS | ||
Cylinder | 2 | 16 | 5 | |
5 | 19 | 7 | ||
SST | 9 | 92 | 16 | |
66 | 195 | 83 |
Data: SST | Random | QR | DEIM | |
---|---|---|---|---|
POD | Marginally sampled (K* = 2, P* = 2) | 2.95 × 10 | 35.30 | |
Marginally sampled (K* = 2, P* = 2 (+2)) | 35.96 | |||
Marginally oversampled (K* = 2, P* = 3) | 30.52 | |||
Oversampled (K* = 2, P* = 4) | 66.98 | 36.84 | 23.64 | |
ELM-GS | Marginally sampled (K* = 2, P* = 2) | |||
Marginally sampled (K* = 2, P* = 2 (+3)) | ||||
Marginally oversampled (K* = 2, P* = 3) | 197.18 | 74.78 | 74.42 | |
Oversampled (K* = 2, P* = 4) | 45.60 | 33.33 | 29.96 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayaraman, B.; Mamun, S.M.A.A. On Data-Driven Sparse Sensing and Linear Estimation of Fluid Flows. Sensors 2020, 20, 3752. https://doi.org/10.3390/s20133752
Jayaraman B, Mamun SMAA. On Data-Driven Sparse Sensing and Linear Estimation of Fluid Flows. Sensors. 2020; 20(13):3752. https://doi.org/10.3390/s20133752
Chicago/Turabian StyleJayaraman, Balaji, and S M Abdullah Al Mamun. 2020. "On Data-Driven Sparse Sensing and Linear Estimation of Fluid Flows" Sensors 20, no. 13: 3752. https://doi.org/10.3390/s20133752
APA StyleJayaraman, B., & Mamun, S. M. A. A. (2020). On Data-Driven Sparse Sensing and Linear Estimation of Fluid Flows. Sensors, 20(13), 3752. https://doi.org/10.3390/s20133752