Hydrogen Sensor: Detecting Far-Field Scattering of Nano-Blocks (Mg, Ag, and Pd)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Hydrogen Sensor with Ag and Pd Nano-Blocks
3.2. Hydrogen Sensor with Ag and Mg Nano-Blocks
3.3. Hydrogen Sensor Composed of Three Materials: Mg, Ag, and Pd
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Staffell, I.; Scamman, D.; Abad, A.V.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef] [Green Version]
- Dryer, F.L.; Chaos, Ã.M.; Zhao, Z.; Stein, J.N.; Alpert, J.Y.; Homer, C.J. Spontaneous ignition of pressurized releases of hydrogen and natural gas into air. Combust. Sci. Tech. 2007, 179, 663–694. [Google Scholar] [CrossRef]
- Soundarrajan, P.; Schweighardt, F. Hydrogen sensing and detection. In Hydrogen Fuel, 1st ed.; Gupta, R.B., Ed.; CRC Press: Boca Raton, FL, USA, 1973; pp. 495–534. [Google Scholar]
- Hübert, T.; Boon-brett, L.; Black, G.; Banach, U. Hydrogen sensors—A review. Sens. Actuators B Chem. 2011, 157, 329–352. [Google Scholar] [CrossRef]
- Ando, M. Recent advances in optochemical sensors for the detection of H2, O2, O3, CO, CO2 and H2O in air. Trends Anal. Chem. 2006, 25, 937–948. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, S.; Liu, H.; Hu, S.; Zhang, D.; Ning, H. A survey on gas sensing technology. Sensors 2012, 12, 9635–9665. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Tang, M.L.; Hentschel, M.; Giessen, H.; Alivisatos, A.P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 2011, 10, 631–636. [Google Scholar] [CrossRef]
- Lee, T.; Lee, D.E.; Kwon, S.-H. Sensitive hydrogen sensors based on gold–palladium double nanoblock. IEEE Photonics Technol. Lett. 2014, 26, 2232–2235. [Google Scholar]
- Shin, E.; Lee, Y.J.; Kim, Y.; Kwon, S.-H. Horizontal plasmonic ruler based on the scattering far-field pattern. Sensors 2018, 18, 3365. [Google Scholar] [CrossRef] [Green Version]
- Feenstra, R.; Griessen, R.; Groot, D.G. Hydrogen induced lattice expansion and effective H-H interaction in single phase PdH. J. Phys. F Met. Phys. 1986, 16, 1933–1952. [Google Scholar] [CrossRef]
- Studt, F.; Pedersen, F.A.; Bligaard, T.; Sørensen, R.Z.; Christensen, C.H.; Nørskov, J.K. On the role of surface modifications of palladium catalysts in the selective hydrogenation of acetylene. Sur. Chem. 2008, 47, 9299–9302. [Google Scholar]
- Vargas, W.E.; Rojas, I.; Azofeifa, D.E.; Clark, N. Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements. Thin Solid Films 2006, 496, 189–196. [Google Scholar] [CrossRef]
- Palm, K.J.; Murray, J.B.; Narayan, T.C.; Munday, J.N. Dynamic optical properties of metal hydrides. ACS Photonics 2018, 5, 4677–4686. [Google Scholar] [CrossRef] [Green Version]
- Shegai, T.; Johansson, P.; Langhammer, C.; Käll, M. Directional scattering and hydrogen sensing by bimetallic Pd−Au nanoantennas. Nano Lett. 2012, 12, 2464−2469. [Google Scholar] [CrossRef] [PubMed]
- She, X.; Shen, Y.; Wang, J.; Jin, C. Pd films on soft substrates: A visual, high-contrast and low-cost optical hydrogen sensor. Light Sci. Appl. 2019, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Flanagan, T.B. The palladium-hydrogen system. Annu. Rev. Mater. Sci. 1991, 21, 269–304. [Google Scholar] [CrossRef]
- Nayak, V.; Verma, U.P. Phase transition and optoelectronic properties of MgH2. Phase Transit. 2016, 89, 437–447. [Google Scholar] [CrossRef]
- Araújo, C.M.; Lebègue, S.; Eriksson, O. Electronic and optical properties of α, γ and β phases of MgH2: A first-principles GW investigation. J. Appl. Phys. 2005, 98, 096106–096109. [Google Scholar]
- Radhakrishnan, T. Further studies on the temperature variation of the refractive index of crystals. Proc. Indian Acad. Sci. A 2000, 3, 22–34. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids, 1st ed.; Ghosh, G., Ed.; Academic Press: Cambridge, MA, USA, 1991; Volume 2. [Google Scholar]
- Weiss, E.A.; Kaufman, G.G.; Kriebel, J.K.; Li, Z.; Schalek, R.; Whitesides, G.M. Si/SiO2-templated formation of ultraflat metal surfaces on glass, polymer, and solder supports: Their use as substrates for self-assembled monolayers. Langmuir 2007, 23, 9686–9694. [Google Scholar] [CrossRef]
- Stefaniuk, T.; Wróbel, P.; Górecka, E.; Szoplik, T. Optimum deposition conditions of ultrasmooth silver nanolayers. Nanoscale Res. Lett. 2014, 9, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Nagpal, P.; Lindquist, N.C.; Oh, S.-H.; Norris, D.J. Ultrasmooth patterned metals for plasmonics and metamaterials. Science 2009, 325, 594–597. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, J.; Mao, Y.-F.; Chen, J.; Wang, S.; Chen, H.-Z.; Zhang, Y.; Wang, S.-Y.; Chen, X.; Li, T.; et al. Stable, high-performance sodium-based plasmonic devices in the near infrared. Nature 2020, 581, 401–417. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-H.; Kwon, S.-H.; Ee, H.-S.; Hwang, Y.; No, Y.-S.; Park, H.-G. Dependence of Q factor on surface roughness in a plasmonic cavity. J. Opt. Soc. Korea 2016, 20, 188–191. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Liu, C.; Gao, Y.; Wang, J.; Yang, W. Influence of surface roughness on surface plasmon resonance phenomenon of gold film. Chin. Opt. Lett. 2016, 14, 0424011–0424013. [Google Scholar]
- Liu, W.; Aguey-Zinsou, K.F. Size effects and hydrogen storage properties of Mg nanoparticles synthesised by an electroless reduction method. J. Mater. Chem. A 2014, 2, 9718–9726. [Google Scholar] [CrossRef]
- Norberg, N.S.; Arthur, T.S.; Fredrick, S.J.; Prieto, A.L. Size-Dependent hydrogen storage properties of mg nanocrystals prepared from solution. J. Am. Chem. Soc. 2011, 133, 10679–10681. [Google Scholar] [CrossRef]
- Yang, F.; Kung, S.; Cheng, M.; Hemminger, J.C.; Penner, R.M. Smaller is faster and more sensitive: The effect of wire size on the detection of nanowires. ACS Nano 2010, 4, 5233–5244. [Google Scholar] [CrossRef]
- Langhammer, C.; Zhdanov, V.P.; Zoric, I.; Kasemo, B. Size-dependent kinetics of hydriding and dehydriding of Pd nanoparticles. Phys. Rev. Lett. 2010, 104, 135502. [Google Scholar] [CrossRef] [Green Version]
Hydrogen Concentration H/Pd | Hydrogen Pressure (Pa) | Lattice Expansion (%) | Plasma Frequency (eV) | Relaxation Time × 1015 (s) | |
---|---|---|---|---|---|
0.00 | 0.0 | 0.00 | 7.33 | 2.10 | 1.10 |
0.16 | 467 | 0.818 | 7.30 | 2.07 | 0.80 |
0.47 | 733 | 2.12 | 7.30 | 2.07 | 0.80 |
0.61 | 1346 | 2.68 | 7.26 | 2.04 | 0.75 |
0.72 | 4185 | 3.12 | 7.11 | 2.04 | 0.75 |
0.82 | 8037 | 3.57 | 6.91 | 2.12 | 0.85 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, E.; Lee, Y.J.; Nam, H.; Kwon, S.-H. Hydrogen Sensor: Detecting Far-Field Scattering of Nano-Blocks (Mg, Ag, and Pd). Sensors 2020, 20, 3831. https://doi.org/10.3390/s20143831
Shin E, Lee YJ, Nam H, Kwon S-H. Hydrogen Sensor: Detecting Far-Field Scattering of Nano-Blocks (Mg, Ag, and Pd). Sensors. 2020; 20(14):3831. https://doi.org/10.3390/s20143831
Chicago/Turabian StyleShin, Eunso, Young Jin Lee, Hyoungjoo Nam, and Soon-Hong Kwon. 2020. "Hydrogen Sensor: Detecting Far-Field Scattering of Nano-Blocks (Mg, Ag, and Pd)" Sensors 20, no. 14: 3831. https://doi.org/10.3390/s20143831
APA StyleShin, E., Lee, Y. J., Nam, H., & Kwon, S. -H. (2020). Hydrogen Sensor: Detecting Far-Field Scattering of Nano-Blocks (Mg, Ag, and Pd). Sensors, 20(14), 3831. https://doi.org/10.3390/s20143831