Deep Physiological Model for Blood Glucose Prediction in T1DM Patients
Abstract
:1. Introduction
2. Related Work
3. Proposed Model
4. Description of the Datasets
5. Results
5.1. Simulated Scenario
5.1.1. Validation Based on a 70–30% Data Split
5.1.2. Validation Based on 8 Days for Training 2 Different days for Validation Data Split
5.2. Scenario with Real Data
5.3. Comparing Results with Previous Related Studies
6. Conclusions
Funding
Conflicts of Interest
Appendix A. Model Implementation
input1 = Input(shape = (time_span, 1)) |
x11 = LSTM(units = mem_cells, activation = ‘relu’, return_sequences=False) |
x12 = x11(input1) |
x13 = Dense(units = 3, activation = ‘relu’) |
x1 = x13(x12) |
input2 = Input(shape = (time_span,1)) |
x21 = LSTM(units = mem_cells, activation = ‘relu’, return_sequences = False) |
x22 = x21(input2) |
x23 = Dense(units = 3, activation = ‘relu’) |
x2 = x23(x22) |
input3 = Input(shape = (time_span, 1)) |
x31 = LSTM(units = mem_cells, activation = ‘relu’, return_sequences = False) |
x32 = x31(input3) |
x33 = Dense(units = 3, activation = ‘relu’) |
x3 = x33(x32) |
input4 = Input(shape = (time_span,1)) |
x41 = LSTM(units = mem_cells, activation = ‘relu’, return_sequences = False) |
x42 = x41(input4) |
x43 = Dense(units = 3, activation = ‘relu’) |
x4 = x43(x42) |
added = Concatenate(axis = -1)([x2, x3, x4]) |
out1 = Dense(1)(added) |
added2 = Concatenate(axis = -1)([x1, added]) |
out2 = Dense(1)(added2) |
model = Model(inputs = [input1, input2, input3, input4], outputs=[out1, out2]) |
model.compile(loss = ‘mean_squared_error’, optimizer = keras.optimizers.Adam(0.001)) |
history = model.fit([xTrain[:,:,4:5], xTrain[:,:,1:2], xTrain[:,:,2:3], xTrain[:,:,3:4]], [yTrain, yTrain], |
epochs = 100, |
batch_size = bs, |
validation_split = 0.3, |
verbose = 1, |
shuffle = False) |
References
- Hood, K.K.; DiMeglio, L.A.; Riddle, M.C. Putting continuous glucose monitoring to work for people with type 1 diabetes. Diabetes Care. 2020, 43, 19–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faiz-Ul-Hassan, M.A.; Khaqan, A.; Shuja, S.; Tiwana, M.I.; Qadeer-ul-Hassan, S.M.; Riaz, R.A. Closed loop blood glucose control in diabetics. Biomed. Res. 2017, 16, 7230–7236. [Google Scholar]
- Amar, Y.; Shilo, S.; Oron, T.; Amar, E.; Phillip, M.; Segal, E. Clinically accurate prediction of glucose levels in patients with type 1 diabetes. Diabetes Technol. Ther. 2020. [Google Scholar] [CrossRef] [PubMed]
- Lehmann Eldon, D. Research use of the AIDA www.2aida.org diabetes software simulation program: A review—Part 1. Decision support testing and neural network training. Diabetes Technol. Ther. 2003, 5, 425–438. [Google Scholar] [CrossRef] [Green Version]
- Lehmann Eldon, D. Research use of the AIDA www.2aida.org diabetes software simulation program: A review—Part 2. Generating simulated blood glucose data for prototype validation. Diabetes Technol. Ther. 2003, 5, 641–651. [Google Scholar] [CrossRef]
- Dubosson, F.; Ranvier, J.E.; Bromuri, S.; Calbimonte, J.P.; Ruiz, J.; Schumacher, M. The open D1NAMO dataset: A multi-modal dataset for research on non-invasive type 1 diabetes management. Inform. Med. Unlocked. 2018, 13, 92–100. [Google Scholar] [CrossRef]
- Kavakiotis, I.; Tsave, O.; Salifoglou, A.; Maglaveras, N.; Vlahavas, I.; Chouvarda, I. Machine learning and data mining methods in diabetes research. Comput. Struct. Biotechnol. J. 2017, 15, 104–116. [Google Scholar] [CrossRef]
- Zou, Q.; Qu, K.; Ju, Y.; Tang, H.; Luo, Y.; Yin, D. Predicting diabetes mellitus with machine learning techniques. Front. Genet. 2018, 9, 515. [Google Scholar] [CrossRef]
- Ashiquzzaman, A.; Tushar, A.K.; Islam, M.R.; Shon, D.; Im, K.; Park Lim, D.S.; Kim, J. Reduction of overfitting in diabetes prediction using deep learning neural network. In IT Convergence and Security 2017; Springer: Singapore, 2018; pp. 35–43. [Google Scholar]
- Dankwa-Mullan, I.; Rivo, M.; Sepulveda, M.; Park, Y.; Snowdon, J.; Rhee, K. Transforming diabetes care through artificial intelligence: The future is here. Popul. Health Manag. 2019, 22, 229–242. [Google Scholar] [CrossRef] [Green Version]
- San, P.P.; Ling, S.H.; Nguyen, H.T. Deep learning framework for detection of hypoglycemic episodes in children with type 1 diabetes. In Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Lake Buena Vista (Orlando), FL, USA, 16–20 August 2016; pp. 3503–3506. [Google Scholar]
- Bertachi, A.; Viñals, C.; Biagi, L.; Contreras, I.; Vehí, J.; Conget, I.; Giménez, M. Prediction of Nocturnal Hypoglycemia in Adults with Type 1 Diabetes under Multiple Daily Injections Using Continuous Glucose Monitoring and Physical Activity Monitor. Sensors 2020, 20, 1705. [Google Scholar] [CrossRef] [Green Version]
- Pappada, S.M.; Cameron, B.D.; Rosman, P.M. Development of a neural network for prediction of glucose concentration in type 1 diabetes patients. J. Diabetes Sci. Technol. 2008, 2, 792–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plis, K.; Bunescu, R.; Marling, C.; Shubrook, J.; Schwartz, F. A machine learning approach to predicting blood glucose levels for diabetes management. In Proceedings of the Workshops at the Twenty-Eighth AAAI Conference on Artificial Intelligence, Québec City, QC, Canada, 27–28 July 2014. [Google Scholar]
- Hamdi, T.; Ali, J.B.; Di Costanzo, V.; Fnaiech, F.; Moreau, E.; Ginoux, J.M. Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm. Biocybern. Biomed. Eng. 2018, 38, 362–372. [Google Scholar] [CrossRef]
- Ali, J.B.; Hamdi, T.; Fnaiech, N.; Di Costanzo, V.; Fnaiech, F.; Ginoux, J.M. Continuous blood glucose level prediction of Type 1 Diabetes based on Artificial Neural Network. Biocybern. Biomed. Eng. 2018, 38, 828–840. [Google Scholar]
- Naumova, V.; Pereverzyev, S.V.; Sivananthan, S. A meta-learning approach to the regularized learning—Case study: Blood glucose prediction. Neural Netw. 2012, 33, 181–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, I.; Ang, L.; Jaiswal, M.; Pop-Busui, R.; Wiens, J. Deep multi-output forecasting: Learning to accurately predict blood glucose trajectories. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining ACM, London, UK, 19–23 August 2018; pp. 1387–1395. [Google Scholar]
- Mhaskar, H.N.; Pereverzyev, S.V.; van der Walt, M.D. A deep learning approach to diabetic blood glucose prediction. Front. Applied Math. Stat. 2017, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Martinsson, J.; Schliep, A.; Eliasson, B.; Meijner, C.; Persson, S.; Mogren, O. Automatic blood glucose prediction with confidence using recurrent neural networks. In Proceedings of the 3rd International Workshop on Knowledge Discovery in Healthcare Data, KDH@ IJCAI-ECAI 2018, Stockholm, Sweden, 13 July 2018; pp. 64–68. [Google Scholar]
- Marling, C.; Bunescu, R.C. The OhioT1DM Dataset for Blood Glucose Level Prediction. In Proceedings of the 3rd International Workshop on Knowledge Discovery in Healthcare Data, KDH@ IJCAI-ECAI 2018, Stockholm, Sweden, 13 July 2018; pp. 60–63. [Google Scholar]
- Sun, Q.; Jankovic, M.V.; Bally, L.; Mougiakakou, S.G. Predicting Blood Glucose with an LSTM and Bi-LSTM Based Deep Neural Network. In Proceedings of the 14th Symposium on Neural Networks and Applications (NEUREL) IEEE, Belgrade, Serbia, 20–21 November 2018; pp. 1–5. [Google Scholar]
- El Idriss, T.; Idri, A.; Abnane, I.; Bakkoury, Z. Predicting Blood Glucose using an LSTM Neural Network. In Proceedings of the 2019 Federated Conference on Computer Science and Information Systems (FedCSIS) IEEE, Leipzig, Germany, 1–4 September 2019; pp. 35–41. [Google Scholar]
- Li, N.; Tuo, J.; Wang, Y.; Wang, M. Prediction of blood glucose concentration for type 1 diabetes based on echo state networks embedded with incremental learning. Neurocomputing 2020, 378, 248–259. [Google Scholar] [CrossRef]
- Martinsson, J.; Schliep, A.; Eliasson, B.; Mogren, O. Blood glucose prediction with variance estimation using recurrent neural networks. J. Healthc. Inf. Res. 2020, 4, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Woldaregay, A.Z.; Årsand, E.; Walderhaug, S.; Albers, D.; Mamykina, L.; Botsis, T.; Hartvigsen, G. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Artif. Intell. Med. 2019, 98, 109–134. [Google Scholar] [CrossRef]
- Hayeri, A. Predicting Future Glucose Fluctuations Using Machine Learning and Wearable Sensor Data. Diabetes 2018, 67 (Suppl. 1). [Google Scholar] [CrossRef]
- Zhu, T.; Li, K.; Herrero, P.; Chen, J.; Georgiou, P. A Deep Learning Algorithm for Personalized Blood Glucose Prediction. In Proceedings of the 3rd International Workshop on Knowledge Discovery in Healthcare Data, KDH@ IJCAI-ECAI 2018, Stockholm, Sweden, 13 July 2018; pp. 64–78. [Google Scholar]
- Mosquera-Lopez, C.; Dodier, R.; Tyler, N.; Resalat, N.; Jacobs, P. Leveraging a Big Dataset to Develop a Recurrent Neural Network to Predict Adverse Glycemic Events in Type 1 Diabetes. IEEE J. Biomed. Health Inform. 2019. [Google Scholar] [CrossRef]
- Li, K.; Daniels, J.; Liu, C.; Herrero-Vinas, P.; Georgiou, P. Convolutional recurrent neural networks for glucose prediction. IEEE J. Biomed. Health Inform. 2019, 24, 603–613. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, N.; Hajizadeh, I.; Rashid, M.; Turksoy, K.; Breton, M.; Cinar, A. Improving glucose prediction accuracy in physically active adolescents with type 1 diabetes. J. Diabetes Sci. Technol. 2019, 13, 718–727. [Google Scholar] [CrossRef] [PubMed]
- Mirshekarian, S.; Bunescu, R.; Marling, C.; Schwartz, F. Using LSTMs to learn physiological models of blood glucose behavior. In Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, South Korea, 11–15 July 2017; pp. 2887–2891. [Google Scholar]
- Gu, W.; Zhou, Z.; Zhou, Y.; He, M.; Zou, H.; Zhang, L. Predicting Blood Glucose Dynamics with Multi-time-series Deep Learning. In Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems, Delft, Netherlands, 6–8 November 2017; p. 55. [Google Scholar]
- Man, C.D.; Rizza, R.A.; Cobelli, C. Meal simulation model of the glucose-insulin system. Trans. Biomed. Eng. 2007, 54, 1740–1749. [Google Scholar]
- Hovorka, R.; Canonico, V.; Chassin, L.J.; Haueter, U.; Massi-Benedetti, M.; Federici, M.O.; Pieber, T.R.; Schaller, H.C.; Schaupp, L.; Vering, T.; et al. Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol. Meas. 2004, 25, 905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oviedo, S.; Vehi, J.; Calm, R.; Armengol, J. A Review of Personalized Blood Glucose Prediction Strategies for T1DM Patients. Int. J. Numer Method Biomed. Eng. 2017, 33, e2833. [Google Scholar] [CrossRef]
- Clarke, W.L.; Cox, D.; Gonder-Frederick, L.A.; Carter, W.; Pohl, S.L. Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care. 1987, 10, 622–628. [Google Scholar] [CrossRef]
- Georga, E.I.; Protopappas, V.C.; Polyzos, D.; Fotiadis, D.I. Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models. Med. Biol. Eng. Comput. 2015, 53, 1305–1318. [Google Scholar] [CrossRef] [PubMed]
- Sparacino, G.; Zanderigo, F.; Corazza, S.; Maran, A.; Facchinetti, A.; Cobelli, C. Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series. IEEE Trans. Biomed. Eng. 2007, 54, 931–937. [Google Scholar] [CrossRef]
- Pérez-Gandía, C.; Facchinetti, A.; Sparacino, G.; Cobelli, C.; Gómez, E.J.; Rigla, M.; de Leiva, A.; Hernando, M.E. Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring. Diabetes Technol. Ther. 2010, 12, 81–88. [Google Scholar] [CrossRef]
- Zecchin, C.; Facchinetti, A.; Sparacino, G.; De Nicolao, G.; Cobelli, C. Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration. IEEE Trans. Bio-Med. Eng. 2012, 59, 1550–1560. [Google Scholar] [CrossRef]
- Turksoy, K.; Bayrak, E.S.; Quinn, L.; Littlejohn, E.; Rollins, D.; Cinar, A. Hypoglycemia early alarm systems based on multivariable. Ind. Eng. Chem. Res. 2013, 52, 12329–12336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Number of Memory Cells | 30 min | 60 min |
---|---|---|
5 | 3.53 | 7.09 |
10 | 3.45 | 4.72 |
15 | 3.47 | 6.45 |
Number of Memory Cells | 30 min | 60 min |
---|---|---|
5 | 2.77 | 7.1 |
10 | 2.83 | 4.35 |
15 | 2.63 | 5.76 |
Number of Memory Cells | 30 min | 60 min |
---|---|---|
10 | 6.42 | 11.35 |
Study | Input Variables | Method Used | RMSE (mg/dL) |
---|---|---|---|
Li et al. [24] | GCM data | Echo State Network (ESN) | 23.57 |
Zhu et al. [28] | CGM data, insulin and carbohydrate | Causal CNN | 21.7 |
Sun et al. [22] | GCM data | RNN-LSTM | 21.7 |
Martinsson et al. [20] | GCM data | RNN-LSTM | 20.1 |
Sparacino et al. [39] | CGM Data | AR | 18.78 |
Pérez-Gandia et al. [40] | CGM Data | Feed-Forward NN | 17.5 |
Zecchin et al. [41] | CGM data, glucose rate after meals | Feed-Forward NN and first-order polynomial model | 14.0 |
Idriss [23] | GCM data | RNN-LSTM | 12.38 |
Turksoy et al. [42] | CGM data, insulin on board, energy expenditure, galvanic skin response | Recursive ARMAX model | 11.7 |
Hamdi et al. [15] | CGM data | SVR and DE | 10.78 |
Li et al. [30] | CGM data, insulin and carbohydrate | CNN+RNN-LSTM | 9.38 |
Mosquera-Lopez et al. [29] | CGM and insulin | RNN-LSTM | 7.55 |
Ali et al. [16] | CGM Data | Feed-Forward NN | 7.45 |
Our model for real patients | CGM data, insulin and carbohydrate | Metabolic inspired model using RNN-LSTM | 6.42 1 |
Georga et al. [38] | CGM data, meal intake, insulin concentration, energy expenditure, time | SVR—Random Forest (RF) | 5.7 |
Our model for simulated patients | CGM data, insulin and carbohydrate | Metabolic inspired model using RNN-LSTM | 3.45 1 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munoz-Organero, M. Deep Physiological Model for Blood Glucose Prediction in T1DM Patients. Sensors 2020, 20, 3896. https://doi.org/10.3390/s20143896
Munoz-Organero M. Deep Physiological Model for Blood Glucose Prediction in T1DM Patients. Sensors. 2020; 20(14):3896. https://doi.org/10.3390/s20143896
Chicago/Turabian StyleMunoz-Organero, Mario. 2020. "Deep Physiological Model for Blood Glucose Prediction in T1DM Patients" Sensors 20, no. 14: 3896. https://doi.org/10.3390/s20143896
APA StyleMunoz-Organero, M. (2020). Deep Physiological Model for Blood Glucose Prediction in T1DM Patients. Sensors, 20(14), 3896. https://doi.org/10.3390/s20143896