Optical Waveguides and Integrated Optical Devices for Medical Diagnosis, Health Monitoring and Light Therapies
Abstract
:1. Introduction
2. Biocompatible Optical Waveguides
2.1. Glass-Based Waveguides
2.2. Natural Polymer-Based Waveguides
2.2.1. Silk-Based Waveguides
2.2.2. Cellulose-Based Waveguides
2.3. Synthetic Polymer-Based Waveguides
2.3.1. Polylactic Acid (PLA)-Based Waveguides
2.3.2. Polyethylene Glycol (PEG)-Based Waveguides
2.3.3. Polydimethylsiloxane (PDMS)-Based Waveguides
2.3.4. Polyacrylamide (PAM)-Based Waveguides
2.4. Heterogeneous Materials Based Waveguides
2.5. Key Principles of Waveguides
3. Integrated Implantable Optical Devices in Photomedicine
3.1. Passive Optical Devices
3.2. Active Optical Devices
4. Integrated Wearable Optical Devices
4.1. Integrated Wearable Optical Devices for Diagnosis
4.1.1. Colorimetry-Based Optical Devices
4.1.2. Fluorescence-Based Optical Devices
4.1.3. Luminescence-Based Optical Devices
4.2. Integrated Wearable Optical Devices for Therapy
4.2.1. Passive Optical Devices
4.2.2. Active Optical Devices
5. Photomedicine Based on Biocompatible Optical Devices
5.1. Optical Imaging
5.2. Physiological Signal Detection
5.2.1. Blood Biomarker Detection
5.2.2. Noninvasive In-Situ Body Fluid Analysis
5.2.3. Health Monitoring
5.3. Phototherapy
5.3.1. PTT
5.3.2. PDT
5.3.3. PBM
5.4. Optogenetics
5.5. Summary of the Different Optical Devices and Their Various Applications in Photomedicine
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yun, S.H.; Kwok, S.J.J. Light in diagnosis, therapy and surgery. Nat. Biomed. Eng. 2017, 1. [Google Scholar] [CrossRef] [PubMed]
- Robertson, C.A.; Evans, D.H.; Abrahamse, H. Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol. B 2009, 96, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Siewert, B.; Stuppner, H. The photoactivity of natural products—An overlooked potential of phytomedicines? Phytomedicine 2019, 60, 152985. [Google Scholar] [CrossRef]
- Huang, X.; El-Sayed, M.A. Plasmonic photo-thermal therapy (PPTT). Alex. J. Med. 2019, 47, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hamblin, M.R. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. Aims Biophys. 2017, 4, 337–361. [Google Scholar] [CrossRef]
- Dong, J.; Xiong, D. Applications of light emitting diodes in health care. Ann. Biomed. Eng. 2017, 45, 2509–2523. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 2019, 48, 1465–1491. [Google Scholar] [CrossRef]
- Kim, J.; Campbell, A.S.; de Avila, B.E.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406. [Google Scholar] [CrossRef]
- Luker, G.D.; Luker, K.E. Optical imaging: Current applications and future directions. J. Nucl. Med. 2008, 49, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Humar, M.; Dobravec, A.; Zhao, X.; Yun, S.H. Biomaterial microlasers implantable in the cornea, skin, and blood. Optica 2017, 4, 1080–1085. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Zhang, Y.; Pan, J.; Li, S.; Sun, X.; Zhang, B.; Peng, H. Weaving sensing fibers into electrochemical fabric for real-time health monitoring. Adv. Funct. Mater. 2018, 28, 1804456. [Google Scholar] [CrossRef]
- Mohanty, S.K.; Lakshminarayananan, V. Optical techniques in optogenetics. J. Mod. Opt. 2015, 62, 949–970. [Google Scholar] [CrossRef] [PubMed]
- Humar, M.; Kwok, S.J.J.; Choi, M.; Yetisen, A.K.; Cho, S.; Yun, S.-H. Toward biomaterial-based implantable photonic devices. Nanophotonics 2017, 6. [Google Scholar] [CrossRef]
- Milanese, D.; Pugliese, D.; Boetti, N.G.; Pissadakis, S.; Konstantaki, M.; Peterka, P.; Di Sieno, L.; Gallichi-Nottiani, D.; Lousteau, J.; Janner, D.; et al. Multimaterial bioresorbable optical fibers for theranostics. In Proceedings of the European Conference on Biomedical Optics, Munich, Germany, 23–25 June 2019. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, J.; Qi, B.; Tao, W.; Wang, J.; Zhao, C.; Peng, H.; Shi, J. Multifunctional fibers to shape future biomedical devices. Adv. Funct. Mater. 2019, 29, 1902834. [Google Scholar] [CrossRef]
- Yan, W.; Page, A.; Nguyen-Dang, T.; Qu, Y.; Sordo, F.; Wei, L.; Sorin, F. Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv. Mater. 2019, 31, 1802348. [Google Scholar] [CrossRef]
- Righini, G.C.; Chiappini, A. Glass optical waveguides: A review of fabrication techniques. Opt. Eng. 2014, 53, 071819. [Google Scholar] [CrossRef]
- Hirano, M.; Nakanishi, T.; Okuno, T.; Onishi, M. Silica-based highly nonlinear fibers and their application. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 103–113. [Google Scholar] [CrossRef]
- Di Sieno, L.; Boetti, N.G.; Dalla Mora, A.; Pugliese, D.; Farina, A.; Konugolu Venkata Sekar, S.; Ceci-Ginistrelli, E.; Janner, D.; Pifferi, A.; Milanese, D.; et al. Bioresorbable fibers for time-domain diffuse optical measurements: A step toward next generation optical implantable devices. In Proceedings of the Optical Tomography and Spectroscopy of Tissue XIII, San Francisco, CA, USA, 2–7 February 2019; Volume 10874, p. 1087409. [Google Scholar] [CrossRef] [Green Version]
- Ceci-Ginistrelli, E.; Pugliese, D.; Boetti, N.G.; Novajra, G.; Ambrosone, A.; Lousteau, J.; Vitale-Brovarone, C.; Abrate, S.; Milanese, D. Novel biocompatible and resorbable UV-transparent phosphate glass based optical fiber. Opt. Mater. Express 2016, 6, 2040. [Google Scholar] [CrossRef]
- Abaya, T.V.F. Implantable Light Delivery Interfaces for Optical Neural Stimulation. Ph.D. Thesis, The University of Utah, Salt Lake City, UT, USA, 2013. [Google Scholar]
- Holland, C.; Numata, K.; Rnjak-Kovacina, J.; Seib, F.P. The biomedical use of silk: Past, present, future. Adv. Healthc. Mater. 2019, 8, e1800465. [Google Scholar] [CrossRef] [Green Version]
- Perotto, G.; Zhang, Y.; Naskar, D.; Patel, N.; Kaplan, D.L.; Kundu, S.C.; Omenetto, F.G. The optical properties of regenerated silk fibroin films obtained from different sources. Appl. Phys. Lett. 2017, 111, 103702. [Google Scholar] [CrossRef]
- Wang, X.; Ding, Z.; Wang, C.; Chen, X.; Xu, H.; Lu, Q.; Kaplan, D.L. Bioactive silk hydrogels with tunable mechanical properties. J. Mater. Chem. B 2018, 6, 2739–2746. [Google Scholar] [CrossRef] [PubMed]
- Applegate, M.B.; Perotto, G.; Kaplan, D.L.; Omenetto, F.G. Biocompatible silk step-index optical waveguides. Biomed. Opt. Express. 2015, 6, 4221–4227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, M.V.; Santos, S.N.C.; Martins, R.J.; Almeida, J.M.P.; Paula, K.T.; Almeida, G.F.B.; Ribeiro, S.J.L.; Mendonça, C.R. Femtosecond direct laser writing of silk fibroin optical waveguides. J. Mater. Sci. Mater. Electron. 2019, 30, 16843–16848. [Google Scholar] [CrossRef]
- Qiao, X.; Qian, Z.; Li, J.; Sun, H.; Han, Y.; Xia, X.; Zhou, J.; Wang, C.; Wang, Y.; Wang, C. Synthetic engineering of spider silk fiber as implantable optical waveguides for low-loss light guiding. ACS Appl. Mater. Interfaces 2017, 9, 14665–14676. [Google Scholar] [CrossRef]
- Roberts, E.G.; Rim, N.G.; Huang, W.; Tarakanova, A.; Yeo, J.; Buehler, M.J.; Kaplan, D.L.; Wong, J.Y. Fabrication and characterization of recombinant silk-elastin-like-protein (SELP) fiber. Macromol. Biosci. 2018, 18, e1800265. [Google Scholar] [CrossRef] [PubMed]
- Dupuis, A.; Guo, N.; Gao, Y.; Godbout, N.; Lacroix, S.; Dubois, C.; Skorobogatiy, M. Prospective for biodegradable microstructured optical fibers. Opt. Lett. 2007, 32, 109–111. [Google Scholar] [CrossRef]
- Dupuis, A.; Guo, N.; Gao, Y.; Skorobogata, O.; Gauvreau, B.; Dubois, C.; Skorobogatiy, M.A. Fabrication strategies and potential applications of the “green” microstructured optical fibers. J. Biomed. Opt. 2008, 13, 054003. [Google Scholar] [CrossRef]
- Shan, D.; Gerhard, E.; Zhang, C.; Tierney, J.W.; Xie, D.; Liu, Z.; Yang, J. Polymeric biomaterials for biophotonic applications. Bioact. Mater. 2018, 3, 434–445. [Google Scholar] [CrossRef]
- Avinc, O.; Khoddami, A. Overview of poly (lactic acid)(PLA) fibre. Fibre. Chem. 2009, 41, 391–401. [Google Scholar] [CrossRef]
- Gierej, A.; Vagenende, M.; Filipkowski, A.; Siwicki, B.; Buczynski, R.; Thienpont, H.; Van Vlierberghe, S.; Geernaert, T.; Dubruel, P.; Berghmans, F. Poly(D,L-Lactic Acid) (PDLLA) biodegradable and biocompatible polymer optical fiber. J. Lightwave Technol. 2019, 37, 1916–1923. [Google Scholar] [CrossRef]
- Nizamoglu, S.; Gather, M.C.; Humar, M.; Choi, M.; Kim, S.; Kim, K.S.; Hahn, S.K.; Scarcelli, G.; Randolph, M.; Redmond, R.W.; et al. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine. Nat. Commun. 2016, 7, 10374. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.; Humar, M.; Kim, S.; Yun, S.H. Step-index optical fiber made of biocompatible hydrogels. Adv. Mater. 2015, 27, 4081–4086. [Google Scholar] [CrossRef] [PubMed]
- Ersen, A.; Sahin, M. Polydimethylsiloxane-based optical waveguides for tetherless powering of floating microstimulators. J. Biomed. Opt. 2017, 22, 55005. [Google Scholar] [CrossRef]
- Wang, L.; Zhong, C.; Ke, D.; Ye, F.; Tu, J.; Wang, L.; Lu, Y. Ultrasoft and highly stretchable hydrogel optical fibers for in vivo optogenetic modulations. Adv. Opt. Mater. 2018, 6, 1800427. [Google Scholar] [CrossRef]
- Yang, X.; Pan, X.; Blyth, J.; Lowe, C.R. Towards the real-time monitoring of glucose in tear fluid: Holographic glucose sensors with reduced interference from lactate and pH. Biosens. Bioelectron. 2008, 23, 899–905. [Google Scholar] [CrossRef]
- Choi, M.; Choi, J.W.; Kim, S.; Nizamoglu, S.; Hahn, S.K.; Yun, S.H. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nat. Photonics 2013, 7, 987–994. [Google Scholar] [CrossRef] [PubMed]
- Yetisen, A.K.; Jiang, N.; Fallahi, A.; Montelongo, Y.; Ruiz-Esparza, G.U.; Tamayol, A.; Zhang, Y.S.; Mahmood, I.; Yang, S.A.; Kim, K.S.; et al. Glucose-sensitive hydrogel optical fibers functionalized with phenylboronic acid. Adv. Mater. 2017, 29. [Google Scholar] [CrossRef]
- Schmocker, A.; Khoushabi, A.; Schizas, C.; Bourban, P.-E.; Pioletti, D.P.; Moser, C. Miniature probe for the delivery and monitoring of a photopolymerizable material. J. Biomed. Opt. 2015, 20, 127001. [Google Scholar] [CrossRef]
- Martincek, I.; Pudis, D.; Chalupova, M. Technology for the preparation of PDMS optical fibers and some fiber structures. IEEE Photonics Technol. Lett. 2014, 26, 1446–1449. [Google Scholar] [CrossRef]
- Ersen, A.; Sahin, M. A PDMS-based optical waveguide for transcutaneous powering of microelectrode arrays. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2016, 2016, 4475–4478. [Google Scholar] [CrossRef]
- To, C.; Hellebrekers, T.L.; Park, Y.-L. Highly stretchable optical sensors for pressure, strain, and curvature measurement. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 5898–5903. [Google Scholar]
- Shao, P.; Kochevar, I.E.; Seiler, T.; Yun, S.-H.; Yun, S.A. Flexible Optical Waveguides for Uniform Periscleral Crosslinking. Available online: http://iovs.arvojournals.org/article.aspx?articleid=2627721 (accessed on 14 July 2020).
- Pasche, S.; Angeloni, S.; Ischer, R.; Liley, M.; Luprano, J.; Voirin, G. Wearable biosensors for monitoring wound healing. Adv. Sci. Technol. 2008, 57, 80–87. [Google Scholar] [CrossRef]
- Zhou, N.; Wang, P.; Shi, Z.X.; Gao, Y.X.; Yang, Y.X.; Wang, Y.P.; Xie, Y.; Cai, D.W.; Guo, X.; Zhang, L.; et al. Au nanorod-coupled microfiber optical humidity sensors. Opt. Express 2019, 27, 8180–8185. [Google Scholar] [CrossRef]
- Yan, W.; Gupta, T.D.; Richard, I.; Sorin, F. Integration of high-performance optoelectronic nanowire-based devices at optical fiber tips. In Proceedings of the Conference on Lasers and Electro-Optics (CLEO): Science and Innovations, San Jose, CA, USA, 13–18 May 2018; p. SF2K.4. [Google Scholar]
- Nazempour, R.; Zhang, Q.; Fu, R.; Sheng, X. Biocompatible and implantable optical fibers and waveguides for biomedicine. Materials (Basel) 2018, 11, 1283. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Guo, Y.; Jia, X.; Choe, H.K.; Grena, B.; Kang, J.; Park, J.; Lu, C.; Canales, A.; Chen, R.; et al. One-step optogenetics with multifunctional flexible polymer fibers. Nat. Neurosci. 2017, 20, 612–619. [Google Scholar] [CrossRef]
- Canales, A.; Jia, X.; Froriep, U.P.; Koppes, R.A.; Tringides, C.M.; Selvidge, J.; Lu, C.; Hou, C.; Wei, L.; Fink, Y.; et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 2015, 33, 277–284. [Google Scholar] [CrossRef]
- Kilias, A.; Canales, A.; Froriep, U.P.; Park, S.; Egert, U.; Anikeeva, P. Optogenetic entrainment of neural oscillations with hybrid fiber probes. J. Neural Eng. 2018, 15, 056006. [Google Scholar] [CrossRef]
- Gannot, I.; Leber, A.; Bartolomei, N.; Das Gupta, T.; Page, A.G.; Yan, W.; Nguyen Dang, T.; Qu, Y.; Sorin, F. Super-elastic multi-material optical fibers for healthcare applications. Opt. Fibers Sens. Med Diagn. Treat. Appl. XIX 2019, 10872, 108720M. [Google Scholar] [CrossRef]
- Lu, C.; Park, S.; Richner, T.J.; Derry, A.; Brown, I.; Hou, C.; Rao, S.; Kang, J.; Moritz, C.T.; Fink, Y. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits. Sci. Adv. 2017, 3, e1600955. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Wang, X.; Chen, R. Optical waveguiding properties of colloidal quantum dots doped polymer microfibers. Opt. Express 2018, 26, 13408–13415. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Loke, G.; Fink, Y.; Anikeeva, P. Flexible fiber-based optoelectronics for neural interfaces. Chem. Soc. Rev. 2019, 48, 1826–1852. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Canales, A.; Anikeeva, P. Neural recording and modulation technologies. Nat. Rev. Mater. 2017, 2. [Google Scholar] [CrossRef]
- Lacour, S.P.; Courtine, G.; Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 2016, 1. [Google Scholar] [CrossRef] [Green Version]
- Frank, J.A.; Antonini, M.-J.; Anikeeva, P. Next-generation interfaces for studying neural function. Nat. Biotechnol. 2019, 37, 1013–1023. [Google Scholar] [CrossRef]
- Shin, H.; Son, Y.; Chae, U.; Kim, J.; Choi, N.; Lee, H.J.; Woo, J.; Cho, Y.; Yang, S.H.; Lee, C.J.; et al. Multifunctional multi-shank neural probe for investigating and modulating long-range neural circuits in vivo. Nat. Commun. 2019, 10, 3777. [Google Scholar] [CrossRef] [Green Version]
- Son, D.; Lee, J.; Lee, D.J.; Ghaffari, R.; Yun, S.; Kim, S.J.; Lee, J.E.; Cho, H.R.; Yoon, S.; Yang, S.; et al. Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases. ACS Nano 2015, 9, 5937–5946. [Google Scholar] [CrossRef]
- Tian, Z.; Cheng, J.; Liu, J.; Zhu, Y. Dissolving graphene/poly(acrylic acid) microneedles for potential transdermal drug delivery and photothermal therapy. J. Nanosci. Nanotechnol. 2019, 19, 2453–2459. [Google Scholar] [CrossRef]
- Kim, M.; An, J.; Kim, K.S.; Choi, M.; Humar, M.; Kwok, S.J.; Dai, T.; Yun, S.H. Optical lens-microneedle array for percutaneous light delivery. Biomed. Opt. Express 2016, 7, 4220–4227. [Google Scholar] [CrossRef] [Green Version]
- Shin, G.; Gomez, A.M.; Al-Hasani, R.; Jeong, Y.R.; Kim, J.; Xie, Z.; Banks, A.; Lee, S.M.; Han, S.Y.; Yoo, C.J.; et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 2017, 93, 509–521. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.W.; McCall, J.G.; Shin, G.; Zhang, Y.; Al-Hasani, R.; Kim, M.; Li, S.; Sim, J.Y.; Jang, K.I.; Shi, Y.; et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 2015, 162, 662–674. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Mickle, A.D.; Gutruf, P.; McIlvried, L.A.; Guo, H.; Wu, Y.; Golden, J.P.; Xue, Y.; Grajales-Reyes, J.G.; Wang, X. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. Sci. Adv. 2019, 5, eaaw5296. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Cui, L.; Shi, X.; Tian, X.; Wang, D.; Gu, C.; Chen, E.; Cheng, X.; Xu, Y.; Hu, Y.; et al. Textile display for electronic and brain-interfaced communications. Adv. Mater. 2018, 30, e1800323. [Google Scholar] [CrossRef]
- Yetisen, A.K.; Martinez-Hurtado, J.L.; Unal, B.; Khademhosseini, A.; Butt, H. Wearables in medicine. Adv. Mater. 2018, 30, e1706910. [Google Scholar] [CrossRef]
- Wu, Q.; Hu, J. Waterborne polyurethane based thermoelectric composites and their application potential in wearable thermoelectric textiles. Compos. Part B Eng. 2016, 107, 59–66. [Google Scholar] [CrossRef]
- Robledo, Á.; Sánchez, I.; Cardona, J.L.; Vázquez, C. Wearable POF-based heart-rate monitor. Seventh Eur. Workshop Opt. Fibre Sens. 2019, 11199, 111991K. [Google Scholar] [CrossRef]
- Qu, Y.; Nguyen-Dang, T.; Page, A.G.; Yan, W.; Das Gupta, T.; Rotaru, G.M.; Rossi, R.M.; Favrod, V.D.; Bartolomei, N.; Sorin, F. Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing. Adv. Mater. 2018, 30, e1707251. [Google Scholar] [CrossRef]
- Pelaz, B.; Alexiou, C.; Alvarez-Puebla, R.A.; Alves, F.; Andrews, A.M.; Ashraf, S.; Balogh, L.P.; Ballerini, L.; Bestetti, A.; Brendel, C.; et al. Diverse applications of nanomedicine. ACS Nano 2017, 11, 2313–2381. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Zhang, H.; Mao, C.; Li, C.M. Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body. Appl. Energy 2016, 164, 57–63. [Google Scholar] [CrossRef]
- Choi, M.K.; Yang, J.; Kang, K.; Kim, D.C.; Choi, C.; Park, C.; Kim, S.J.; Chae, S.I.; Kim, T.H.; Kim, J.H.; et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 2015, 6, 7149. [Google Scholar] [CrossRef] [PubMed]
- Curto, V.F.; Fay, C.; Coyle, S.; Byrne, R.; O’Toole, C.; Barry, C.; Hughes, S.; Moyna, N.; Diamond, D.; Benito-Lopez, F. Real-time sweat pH monitoring based on a wearable chemical barcode micro-fluidic platform incorporating ionic liquids. Sens. Actuators Chem. 2012, 171, 1327–1334. [Google Scholar] [CrossRef] [Green Version]
- Bandodkar, A.J.; Gutruf, P.; Choi, J.; Lee, K.; Sekine, Y.; Reeder, J.T.; Jeang, W.J.; Aranyosi, A.J.; Lee, S.P.; Model, J.B. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 2019, 5, eaav3294. [Google Scholar] [CrossRef] [Green Version]
- Ruan, J.L.; Chen, C.; Shen, J.H.; Zhao, X.L.; Qian, S.H.; Zhu, Z.G. A gelated colloidal crystal attached lens for noninvasive continuous monitoring of tear glucose. Polymers 2017, 9, 125. [Google Scholar] [CrossRef] [Green Version]
- Sekine, Y.; Kim, S.B.; Zhang, Y.; Bandodkar, A.J.; Xu, S.; Choi, J.; Irie, M.; Ray, T.R.; Kohli, P.; Kozai, N.; et al. A fluorometric skin-interfaced microfluidic device and smartphone imaging module for in situ quantitative analysis of sweat chemistry. Lab Chip 2018, 18, 2178–2186. [Google Scholar] [CrossRef]
- Moradi, V.; Akbari, M.; Wild, P. A fluorescence-based pH sensor with microfluidic mixing and fiber optic detection for wide range pH measurements. Sens. Actuators Phys. 2019, 297, 111507. [Google Scholar] [CrossRef]
- Khan, Y.; Han, D.; Pierre, A.; Ting, J.; Wang, X.; Lochner, C.M.; Bovo, G.; Yaacobi-Gross, N.; Newsome, C.; Wilson, R.; et al. A flexible organic reflectance oximeter array. Proc. Natl. Acad. Sci. USA 2018, 115, E11015–E11024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokota, T.; Zalar, P.; Kaltenbrunner, M.; Jinno, H.; Matsuhisa, N.; Kitanosako, H.; Tachibana, Y.; Yukita, W.; Koizumi, M.; Someya, T. Ultraflexible organic photonic skin. Sci. Adv. 2016, 2, e1501856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, J.; Chui, C.; Tao, X. Luminous fabric devices for wearable low-level light therapy. Biomed. Opt. Express 2013, 4, 2925–2937. [Google Scholar] [CrossRef] [Green Version]
- von Freymann, G.; Schoenfeld, W.V.; Rumpf, R.C.; Green, R.; Knopf, G.K.; Bordatchev, E. Fabrication of large area flexible PDMS waveguide sheets. Int. Soc. Opt. Photonics 2016, 9759, 97590U. [Google Scholar] [CrossRef]
- Kwon, S.; Hwang, Y.H.; Nam, M.; Chae, H.; Lee, H.S.; Jeon, Y.; Lee, S.; Kim, C.Y.; Choi, S.; Jeong, E.G.; et al. Recent progress of fiber shaped lighting devices for smart display applications—A fibertronic perspective. Adv. Mater. 2019, e1903488. [Google Scholar] [CrossRef]
- Hamblin, M.R.; De Sousa, M.V.P.; Arany, P.R.; Carroll, J.D.; Patthoff, D. Low level laser (light) therapy and photobiomodulation: The path forward. Mech. Low-Light Ther. X 2015, 9309, 930902. [Google Scholar] [CrossRef]
- Chen, H.; Yeh, T.H.; He, J.; Zhang, C.; Abbel, R.; Hamblin, M.R.; Huang, Y.; Lanzafame, R.J.; Stadler, I.; Celli, J.; et al. Flexible quantum dot light-emitting devices for targeted photomedical applications. J. Soc. Inf. Disp. 2018, 26, 296–303. [Google Scholar] [CrossRef]
- Jeon, Y.; Choi, H.-R.; Lim, M.; Choi, S.; Kim, H.; Kwon, J.H.; Park, K.-C.; Choi, K.C. A wearable photobiomodulation patch using a flexible red-wavelength oled and its in vitro differential cell proliferation effects. Adv. Mater. Technol. 2018, 3, 1700391. [Google Scholar] [CrossRef]
- Lian, C.; Piksa, M.; Yoshida, K.; Persheyev, S.; Pawlik, K.J.; Matczyszyn, K.; Samuel, I.D.W. Flexible organic light-emitting diodes for antimicrobial photodynamic therapy. NPJ Flex. Electron. 2019, 3. [Google Scholar] [CrossRef]
- Castel, J.C.; Castel, D.; Wei, T.; Hamblin, M.R.; Carroll, J.D.; Arany, P. Novel technology platform for PBM delivery using printed LEDs. Int. Soc. Opt. Photonics 2019, 13. [Google Scholar] [CrossRef]
- Gao, M.; Yu, F.; Lv, C.; Choo, J.; Chen, L. Fluorescent chemical probes for accurate tumor diagnosis and targeting therapy. Chem. Soc. Rev. 2017, 46, 2237–2271. [Google Scholar] [CrossRef]
- Lee, C.M.; Engelbrecht, C.J.; Soper, T.D.; Helmchen, F.; Seibel, E.J. Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging. J. Biophotonics 2010, 3, 385–407. [Google Scholar] [CrossRef] [Green Version]
- Muramatsu, Y.; Kobayashi, T.; Konishi, S. Flexible end-effector integrated with scanning actuator and optical waveguide for endoscopic fluorescence imaging diagnosis. In Proceedings of the 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, Portugal, 18–22 January 2015; pp. 166–167. [Google Scholar]
- Konishi, S.; Kobayashi, T.; Muramatsu, Y. Integration of optical waveguide on pneumatic balloon actuator for flexible scanner in endoscopic imaging diagnosis applications. Adv. Robot. 2016, 30, 1004–1013. [Google Scholar] [CrossRef]
- Kim, H.; Beack, S.; Han, S.; Shin, M.; Lee, T.; Park, Y.; Kim, K.S.; Yetisen, A.K.; Yun, S.H.; Kwon, W.; et al. Multifunctional photonic nanomaterials for diagnostic, therapeutic, and theranostic applications. Adv. Mater. 2018, 30. [Google Scholar] [CrossRef]
- Shan, D.; Zhang, C.; Kalaba, S.; Mehta, N.; Kim, G.B.; Liu, Z.; Yang, J. Flexible biodegradable citrate-based polymeric step-index optical fiber. Biomaterials 2017, 143, 142–148. [Google Scholar] [CrossRef]
- Warren-Smith, S.C.; Dowler, A.; Ebendorff-Heidepriem, H. Soft-glass imaging microstructured optical fibers. Opt. Express 2018, 26, 33604–33612. [Google Scholar] [CrossRef]
- Hong, Y.J.; Jeong, H.; Cho, K.W.; Lu, N.; Kim, D.H. Wearable and implantable devices for cardiovascular healthcare: From monitoring to therapy based on flexible and stretchable electronics. Adv. Funct. Mater. 2019, 29, 1808247. [Google Scholar] [CrossRef]
- Jiang, N.; Montelongo, Y.; Butt, H.; Yetisen, A.K. Microfluidic contact lenses. Small 2018, 14, e1704363. [Google Scholar] [CrossRef] [Green Version]
- Pal, R.K.; Pradhan, S.; Narayanan, L.; Yadavalli, V.K. Micropatterned conductive polymer biosensors on flexible PDMS films. Sens. Actuators Chem. 2018, 259, 498–504. [Google Scholar] [CrossRef]
- Lundsgaard-Nielsen, S.M.; Pors, A.; Banke, S.O.; Henriksen, J.E.; Hepp, D.K.; Weber, A. Critical-depth raman spectroscopy enables home-use non-invasive glucose monitoring. PLoS ONE 2018, 13, e0197134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, J.; Ye, L.; Li, C.; Zhang, M.; Li, P. Rapid and nondestructive measurement of glucose in a skin tissue phantom by near-infrared spectroscopy. Optik 2018, 170, 30–36. [Google Scholar] [CrossRef]
- Bariya, M.; Nyein, H.Y.Y.; Javey, A. Wearable sweat sensors. Nat. Electron. 2018, 1, 160–171. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, S.; Zhang, S.; Li, Y.; Qu, Z.; Chen, Y.; Lu, B.; Wang, X.; Feng, X. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Sci. Adv. 2017, 3, e1701629. [Google Scholar] [CrossRef] [Green Version]
- Javaid, M.A.; Ahmed, A.S.; Durand, R.; Tran, S.D. Saliva as a diagnostic tool for oral and systemic diseases. J. Oral Biol. Craniofac. Res. 2016, 6, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Yang, C.; Dai, Q.; Kong, L. Soft and stretchable polymeric optical waveguide-based sensors for wearable and biomedical applications. Sensors 2019, 19, 3771. [Google Scholar] [CrossRef] [Green Version]
- Li, J.H.; Chen, J.H.; Xu, F. Sensitive and Wearable Optical Microfiber Sensor for Human Health Monitoring. Adv. Mater. Technol. 2018, 3, 1800296. [Google Scholar] [CrossRef]
- Krehel, M.; Schmid, M.; Rossi, R.M.; Boesel, L.F.; Bona, G.L.; Scherer, L.J. An optical fibre-based sensor for respiratory monitoring. Sensors 2014, 14, 13088–13101. [Google Scholar] [CrossRef] [Green Version]
- Hadis, M.A.; Cooper, P.R.; Milward, M.R.; Gorecki, P.C.; Tarte, E.; Churm, J.; Palin, W.M. Development and application of LED arrays for use in phototherapy research. J. Biophotonics 2017, 10, 1514–1525. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.D.; Park, K.; Kim, H.J.; Im, N.R.; Kim, B.; Kim, T.; Seo, S.; Lee, J.S.; Kim, B.M.; Choi, Y.; et al. In vivo photothermal treatment with real-time monitoring by optical fiber-needle array. Biomed. Opt. Express 2017, 8, 3482–3492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Daly, L.; Rudd, G.; Khan, A.P.; Mallidi, S.; Liu, Y.; Cuckov, F.; Hasan, T.; Celli, J.P. Development and evaluation of a low-cost, portable, LED-based device for PDT treatment of early-stage oral cancer in resource-limited settings. Lasers Surg. Med. 2019, 51, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Kofler, B.; Romani, A.; Pritz, C.; Steinbichler, T.B.; Schartinger, V.H.; Riechelmann, H.; Dudas, J. Photodynamic effect of methylene blue and low level laser radiation in head and neck squamous cell carcinoma cell lines. Int. J. Mol. Sci. 2018, 19, 1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, D.; Chi, S.; Li, X.; Wang, C.; Li, Z.; Liu, Z. Upconversion system with quantum dots as sensitizer: Improved photoluminescence and PDT efficiency. ACS Appl. Mater. Interfaces 2019, 11, 41100–41108. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.; Yang, F.; Xi, T.; Zhang, Y.; Ho, J.S. In vivo wireless photonic photodynamic therapy. Proc. Natl. Acad. Sci. USA 2018, 115, 1469–1474. [Google Scholar] [CrossRef] [Green Version]
- de Freitas, L.F.; Hamblin, M.R. proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 348–364. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Marks, H.; Evans, C.; Apiou-Sbirlea, G. Sensing, monitoring, and release of therapeutics: The translational journey of next generation bandages. J. Biomed. Opt. 2018, 24, 1–9. [Google Scholar] [CrossRef]
- Iseri, E.; Kuzum, D. Implantable optoelectronic probes for in vivo optogenetics. J. Neural Eng. 2017, 14, 031001. [Google Scholar] [CrossRef]
- Ramirez, S.; Liu, X.; MacDonald, C.J.; Moffa, A.; Zhou, J.; Redondo, R.L.; Tonegawa, S. Activating positive memory engrams suppresses depression-like behaviour. Nature 2015, 522, 335–339. [Google Scholar] [CrossRef] [Green Version]
- Iyer, S.M.; Montgomery, K.L.; Towne, C.; Lee, S.Y.; Ramakrishnan, C.; Deisseroth, K.; Delp, S.L. Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nat. Biotechnol. 2014, 32, 274–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Tang, Y.; Xing, Y.; Kramer, P.; Bellinger, L.; Tao, F. Potential application of optogenetic stimulation in the treatment of pain and migraine headache: A perspective from animal studies. Brain Sci. 2019, 9, 26. [Google Scholar] [CrossRef] [Green Version]
- Bruegmann, T.; van Bremen, T.; Vogt, C.C.; Send, T.; Fleischmann, B.K.; Sasse, P. Optogenetic control of contractile function in skeletal muscle. Nat. Commun. 2015, 6, 7153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.H.; Lin, C.T.; Hsu, W.L.; Chang, Y.C.; Yeh, S.R.; Li, L.J.; Yao, D.J. A flexible hydrophilic-modified graphene microprobe for neural and cardiac recording. Nanomedicine 2013, 9, 600–604. [Google Scholar] [CrossRef] [PubMed]
- Nussinovitch, U.; Gepstein, L. Optogenetics for in vivo cardiac pacing and resynchronization therapies. Nat. Biotechnol. 2015, 33, 750–754. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.J.; Chang, W.P.; Shyu, B.C. Suppression of cortical seizures by optic stimulation of the reticular thalamus in PV-mhChR2-YFP BAC transgenic mice. Mol. Brain 2017, 10, 42. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhao, H.; Zeng, C.; Van Dort, C.; Faingold, C.L.; Taylor, N.E.; Solt, K.; Feng, H.J. Optogenetic activation of 5-HT neurons in the dorsal raphe suppresses seizure-induced respiratory arrest and produces anticonvulsant effect in the DBA/1 mouse SUDEP model. Neurobiol. Dis. 2018, 110, 47–58. [Google Scholar] [CrossRef]
- Ji, Z.G.; Wang, H. Optogenetic control of astrocytes: Is it possible to treat astrocyte-related epilepsy? Brain Res. Bull. 2015, 110, 20–25. [Google Scholar] [CrossRef]
- Qi, C.; Varga, S.; Oh, S.J.; Lee, C.J.; Lee, D. Optogenetic rescue of locomotor dysfunction and dopaminergic degeneration caused by alpha-synuclein and eko genes. Exp. Neurobiol. 2017, 26, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Dong, Y.; Wu, X.; Lu, Y.; Xu, Z.; Knapp, A.; Yue, Y.; Xu, T.; Xie, Z. The mitochondrial pathway of anesthetic isoflurane-induced apoptosis. J. Biol. Chem. 2010, 285, 4025–4037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busskamp, V.; Roska, B. Optogenetic approaches to restoring visual function in retinitis pigmentosa. Curr. Opin. Neurobiol. 2011, 21, 942–946. [Google Scholar] [CrossRef]
- Barrett, J.M.; Berlinguer-Palmini, R.; Degenaar, P. Optogenetic approaches to retinal prosthesis. Vis. Neurosci. 2014, 31, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Dufour, S.; De Koninck, Y. Optrodes for combined optogenetics and electrophysiology in live animals. Neurophotonics 2015, 2, 031205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Laiwalla, F.; Kim, J.A.; Urabe, H.; Van Wagenen, R.; Song, Y.K.; Connors, B.W.; Zhang, F.; Deisseroth, K.; Nurmikko, A.V. Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue. J. Neural Eng. 2009, 6, 055007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Jiang, S.; Grena, B.J.B.; Kimbrough, I.F.; Thompson, E.G.; Fink, Y.; Sontheimer, H.; Yoshinobu, T.; Jia, X. Polymer composite with carbon nanofibers aligned during thermal drawing as a microelectrode for chronic neural interfaces. ACS Nano 2017, 11, 6574–6585. [Google Scholar] [CrossRef]
- Ozden, I.; Wang, J.; Lu, Y.; May, T.; Lee, J.; Goo, W.; O’Shea, D.J.; Kalanithi, P.; Diester, I.; Diagne, M.; et al. A coaxial optrode as multifunction write-read probe for optogenetic studies in non-human primates. J. Neurosci. Methods 2013, 219, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Rubehn, B.; Wolff, S.B.; Tovote, P.; Luthi, A.; Stieglitz, T. A polymer-based neural microimplant for optogenetic applications: Design and first in vivo study. Lab Chip 2013, 13, 579–588. [Google Scholar] [CrossRef]
- Wu, F.; Stark, E.; Im, M.; Cho, I.J.; Yoon, E.S.; Buzsaki, G.; Wise, K.D.; Yoon, E. An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications. J. Neural Eng. 2013, 10, 056012. [Google Scholar] [CrossRef]
- Bi, X.; Fan, B.; Li, W. Micro-lens-coupled LED neural stimulator for optogenetics. In Proceedings of the 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS), Atlanta, GA, USA, 22–24 October 2015. [Google Scholar] [CrossRef]
- Fan, B.; Kwon, K.Y.; Weber, A.J.; Li, W. An implantable, miniaturized SU-8 optical probe for optogenetics-based deep brain stimulation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014, 2014, 450–453. [Google Scholar] [CrossRef]
- Yoo, S.; Lee, H.; Jun, S.B.; Kim, Y.-K.; Ji, C.-H. Disposable MEMS optrode array integrated with single LED for neurostimulation. Sens. Actuators Phys. 2018, 273, 276–284. [Google Scholar] [CrossRef]
- Cao, H.; Gu, L.; Mohanty, S.K.; Chiao, J.C. An integrated muLED optrode for optogenetic stimulation and electrical recording. IEEE Trans. Biomed. Eng. 2013, 60, 225–229. [Google Scholar] [CrossRef]
- Lee, H.; Bellamkonda, R.V.; Sun, W.; Levenston, M.E. Biomechanical analysis of silicon microelectrode-induced strain in the brain. J. Neural. Eng. 2005, 2, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Jun, J.J.; Steinmetz, N.A.; Siegle, J.H.; Denman, D.J.; Bauza, M.; Barbarits, B.; Lee, A.K.; Anastassiou, C.A.; Andrei, A.; Aydin, C.; et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 2017, 551, 232–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, H.; Hu, H.; Zhao, Y.; Li, J.; Lei, M.; Zhang, Y. Highly-sensitive optical fiber temperature sensors based on PDMS/silica hybrid fiber structures. Sens. Actuators Phys. 2018, 284, 22–27. [Google Scholar] [CrossRef]
- Zhang, S.; Tsang, W.M.; Srinivas, M.; Sun, T.; Singh, N.; Kwong, D.-L.; Lee, C. Development of silicon electrode enhanced by carbon nanotube and gold nanoparticle composites on silicon neural probe fabricated with complementary metal-oxide-semiconductor process. Appl. Phys. Lett. 2014, 104, 193105. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Dou, Q.; Loh, X.J. Nanomaterial mediated optogenetics: Opportunities and challenges. RSC adv. 2016, 6, 60896–60906. [Google Scholar] [CrossRef] [Green Version]
Materials I | Interface Profile II | RI III | Optical Loss IV | Ref. |
---|---|---|---|---|
Calcium-phosphate glasses | Core/cladding | 1.520/1.527 (633) | 0.047 (633) | [20] |
Silk fibroin | Core/cladding | 1.54/1.34 (532) | 1.3–2.7 (540) | [25] |
Core | 4.8–6.8 (632.8) | [26] | ||
Recombinant spider silk | Core | 1.7 (350–1700) | 0.7–0.9 (635) | [27] |
Cellulose | Core/double cladding | 1.475/1.337 (630) | 1–2 (630) | [29] |
Cellulose Acetate/PLLA | Core/cladding | 1.48/1.45 | 9.8 (633) | [30] |
Cellulose Butyrate | Cladding | 1.48 | 2.2 (633) | [30] |
Cellulose Butyrate, PCL | Cladding | 1.48, 1.52 | 6.7 (633) | [30] |
Cellulose Butyrate, PCL | Multiple-core/cladding | 1.48, 1.52 | 8.33 (633) | [30] |
Cellulose Butyrate, HPC | Porous core/cladding | 1.48, 1.34 | 3.1 (633) | [30] |
PDLLA | Core | 0.11 (772) | [33] | |
PLA | Slab | 1.47 | 1.6 (650) | [34] |
PEG | Core/cladding | 1.351–1.5/1.335–1.339 (532) | 1–6 (532) | [39] |
PEGDA | Core | 1.35 | <1 | [35] |
PDMS | Core/cladding | 1.55/1.41 | 0.36 (635) | [43] |
PDMS | Taper core | 1.42 | [45] | |
PAM/Alginate | Core/cladding | 1.344–1.356 | 0.2–0.8 (472) | [46] |
PC/COC | Core/cladding | 1.58/1.52 | 2.44 (473) | [50] |
PC/COC,CPE(design I) | Core/cladding | 2.7 (473) | [51] | |
PC/COC,CPE(design II) | Core/cladding | 1.6 (473) | [51] | |
SEBS/Geniomer | Core/cladding | 1.52/1.42 | 0.74 (465) | [53] |
PC/COC, PDMS, AgNW | Core/cladding | 1.58/1.52 | 1.9 (473) | [54] |
PS/PMMA | Core/cladding | 1.59/1.49 (325) | [55] |
Materials | Mechanical Properties | Key Fabrication Process | Applications | Ref. |
---|---|---|---|---|
Calcium-phosphate glasses | Hard | Perform drawing, rotational casting | PDT, optogenetics and biosensing | [20] |
Silica | Hard | Micromachining | Optogenetics, PDT and imaging | [21] |
Silk fibroin | Flexible, elastic | Mold casting, drying, gelation | Optical imaging and therapy. | [25] |
Silk fibroin | Soft | Femtosecond direct laser writing | Light delivery | [26] |
Recombinant spider silk | Good bending resistance | Genetic engineering and mold casting | Light delivery | [27] |
Recombinant SELP | Stiff | Genetic engineering and spin | Drug delivery and wound healing | [28] |
Cellulose acetate/PLLA | Flexible | Dissolving, co-rolling and thermal drawing | light delivery | [30] |
Cellulose butyrate and PCL | Flexible | Powder filling and thermal drawing | Light delivery or a controlled drug delivery | [30] |
Cellulose butyrate | Flexible | Power filling, thermal drawing and casting | In-vivo sensing and drug delivery | [30] |
PDLLA | Stiff | Mold melting, heat drawing | PDT | [33] |
PLA | Stiff | Melt pressing, solvent casting and ultraviolet-induced crosslinking techniques | Health monitoring, controlled drug release and chronic PDT | [34] |
PEGDA | Flexible | UV induced polymerization and crosslinking | Optogenetics and cell encapsulation | [39] |
PEG | Flexible | Photo crosslinking and dip-coating | Fluorescence and photomedicine | [35] |
p(AM-co-PEGDA) and Ca alginate | Flexible | UV-induced mold polymerization and dip-coating | Glucose sensing | [40] |
PEGDA | Soft | Photopolymerization | Health monitoring | [41] |
PDMS | Stretchable, flexible | Mold curing and dip-coating | Optical sensing | [43] |
PDMS | Highly stretchable and soft | Curing, coating and covering | Pressure, strain, and curvature sensing | [44] |
PDMS | Flexible | Mold curing | Light delivery | [45] |
PAM | Photo cross-linking, deposition and silanizing | Wound healing monitoring | [46] | |
PAM/Alginate | Flexible, high-stretchable | Photo cross-linking and silanizing | Optogenetics | [37] |
PAM Au nanorods | Direct drawing and deposition | Relative humidity (RH) sensing | [47] | |
PC/PMMA, PSU and CPC | Flexible | Rolling and thermal drawing | Light health care and fluorescent imaging | [48] |
PC/COC | Stiff | Mold casting and thermal drawing | Optogenetics | [50] |
PC, COC and CPE | Soft | Thermal drawing | Optogenetics and drug delivery | [51] |
PEI, PPSU and Sn | Soft | Thermal drawing | Optogenetics and drug delivery | [51] |
SEBS/Geniomer | Highly stretchable | Thermal drawing | Optogenetics and light therapy | [53] |
PC/SEBS, PDMS and AgNWs | Flexible | Thermal drawing and dip-coating | Optogenetics and other health-care | [54] |
PS/PMMA | Flexible | Thermal drawing | Photomedicine | [55] |
Light Source | Optical Sensing Modules | Key Fabrication Process | Applications | Ref. |
---|---|---|---|---|
Coupled optical fiber | SU8/glass waveguide | Photolithography, wet etching | Optogenetics | [60] |
Outer LED/therapeutic nanoparticles | Stent | Photolithography and Reactive Ion Etching | PTT, physiological signal detection | [61] |
Outer laser diode | Microneedles | Casting | PTT, drug delivery | [62] |
A micro-lens array coupled with LED | Microneedle arrays | Press melting | Drug delivery, PDT | [63] |
m-ILED | Needle | Electro-deposited, photolithographic technique, etching, laser cutting and dip-coating | Neural stimulation | [64] |
m-ILED array | Waveguide | Mold curing and pressing | Optogenetics | [65] |
μ-ILED | Cuff | Thermal drawing, corona treatment and pre-strain releasing | Optogenetics | [66] |
Optical Methods | Optical Sensing Modules | Key Fabrication Process | Applications | Ref. |
---|---|---|---|---|
Colorimetry | Reservoirs storing dyes | Casting | Chloride, glucose, lactate and pH measurements | [75] |
Colloidal crystal array connected with lens | Mold casting | Glucose concentration test | [76] | |
Array chambers with adsorbent-based sink | Casting | Sweat pH level | [77] | |
Fluorescence | Sweat fluids and fluorometric array | Photolithography | The cystic fibrosis diagnosis | [78] |
Containment reservoirs inserted with reagents | Soft lithographic | Lactate, pH and glucose detection | [79] | |
Luminescence | OLED accompanied by two PLEDs array | Press melting | Pulse oxygenation measurement | [80] |
OLEDs and NIR OLEDs arrays | Etching, laser cutting and dip-coating | Oximeter | [81] |
Light Sources | Optical Sensing Structures | Key Fabrication Process | Applications | Ref. |
---|---|---|---|---|
Coupled LEDs | V-grooved step-index fibers | Saw, weave | Wound healing | [82] |
LED arrays | PDMS-sheet | Soft-lithography techniques | Phototherapy | [83] |
Printed LEDs | Polyester film | Roll-to-roll printed micro LED technology | PBM | [89] |
OLEDs | PET substrate | Thermal deposition | Wound healing | [87] |
QLEDS | PEN film and silicon nitride layer | Solution-processing, vacuum evaporation techniques | Phototherapy | [86] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Dong, J. Optical Waveguides and Integrated Optical Devices for Medical Diagnosis, Health Monitoring and Light Therapies. Sensors 2020, 20, 3981. https://doi.org/10.3390/s20143981
Wang J, Dong J. Optical Waveguides and Integrated Optical Devices for Medical Diagnosis, Health Monitoring and Light Therapies. Sensors. 2020; 20(14):3981. https://doi.org/10.3390/s20143981
Chicago/Turabian StyleWang, Jiayu, and Jianfei Dong. 2020. "Optical Waveguides and Integrated Optical Devices for Medical Diagnosis, Health Monitoring and Light Therapies" Sensors 20, no. 14: 3981. https://doi.org/10.3390/s20143981
APA StyleWang, J., & Dong, J. (2020). Optical Waveguides and Integrated Optical Devices for Medical Diagnosis, Health Monitoring and Light Therapies. Sensors, 20(14), 3981. https://doi.org/10.3390/s20143981