Multilayer Epitaxial Graphene on Silicon Carbide: A Stable Working Electrode for Seawater Samples Spiked with Environmental Contaminants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Seawater and Electrodes
2.2. Multilayer Epitaxial Graphene
2.3. Electrochemistry
2.4. Machine Learning
3. Results and Discussion
3.1. Multilayer Graphene
3.2. Identification Using Machine Learning
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Erickson, J.S.; Shriver-Lake, L.C.; Zabetakis, D.; Stenger, D.A.; Trammell, S.A. A Simple and Inexpensive Electrochemical Assay for the Identification of Nitrogen Containing Explosives in the Field. Sensors 2017, 17, 1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denuault, G. Electrochemical techniques and sensors for ocean research. Ocean Sci. 2009, 5, 697–710. [Google Scholar] [CrossRef] [Green Version]
- Mills, G.; Fones, G. A review of in situ methods and sensors for monitoring the marine environment. Sensor 2012, 32, 17–28. [Google Scholar]
- Taillefert, M.; Luther III, G.W.; Nuzzio, D.B. The Application of Electrochemical Tools for In Situ Measurements in Aquatic Systems. Electroanalysis 2000, 12, 401–412. [Google Scholar] [CrossRef]
- Johnson, K.S.; Needoba, J.A.; Riser, S.C.; Showers, W.J. Chemical Sensor Networks for the Aquatic Environment. Chem. Rev. 2007, 107, 625. [Google Scholar] [CrossRef] [PubMed]
- Justino, C.I.L.; Freitas, A.C.; Duarte, A.C.; Santos, T.A.P.R. Sensors and biosensors for monitoring marine contaminants. Trends Environ. Anal. Chem. 2015, 6–7, 21–30. [Google Scholar] [CrossRef]
- Malzahn, K.; Windmiller, J.R.; Valdes-Ramirez, G.; Schoning, M.J.; Wang, J. Wearable electrochemical sensors for in situ analysis in marine environments. Analyst 2011, 136, 2912–2917. [Google Scholar] [CrossRef] [PubMed]
- Guidance for Diving in Contaminated Waters. In Naval Sea Systems Command Revision 2; 2019; Available online: https://www.navsea.navy.mil/Resources/Strategic-Documents/ (accessed on 17 July 2020).
- Dean, S.N.; Shriver-Lake, L.C.; Stenger, D.A.; Erickson, J.S.; Golden, J.P.; Trammell, S.A. Machine Learning Techniques for Chemical Identification Using Cyclic Square Wave Voltammetry. Sensors 2019, 19, 2392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons, Inc.: New York, NY, USA, 2001. [Google Scholar]
- Kissinger, P.T. Laboratory Techniques in Electroanalytical Chemistry, 2nd ed.; Dekker: Monticello, NY, USA, 1996. [Google Scholar]
- Sultan, S.; Shah, A.; Khan, B.; Qureshi, R.; Al-Mutawah, J.I.; Shah, M.R.; Shah, A.H. Simultaneous Ultrasensitive Detection of Toxic Heavy Metal Ions Using bis (imidazo[4,5–f] [1,10] phenanthroline) Appended bis-triazolo Calix[4] Arene (8)/Glassy Carbon Electrode. J. Electrochem. Soc. 2019, 166, B1719. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene Based Electrochemical Sensors and Biosensors: A Review. Electroanalysis 2010, 22, 1027–1036. [Google Scholar] [CrossRef]
- Goh, M.S.; Pumera, M. Graphene-based electrochemical sensor for detection of 2,4,6-trinitrotoluene (TNT) in seawater: The comparison of single-, few-, and multilayer graphene nanoribbons and graphite microparticles. Anal. Bioanal. Chem. 2011, 399, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Zhou, G.; Christensen, E.R.; Heideman, R.; Chen, J. Graphene-based sensors for detection of heavy metals in water: A review. Anal. Bioanal. Chem. 2014, 406, 3957–3975. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Wei, H.; Pan, D.; Pan, F.; Wang, C.; Kang, Q. Voltammetric Determination of Trace Zn(II) in Seawater on a Poly (sodium 4-styrenesulfonate)/Wrinkled Reduced Graphene Oxide Composite Modified Electrode. J. Electrochem. Soc. 2020, 167, 046519. [Google Scholar] [CrossRef]
- Trammell, S.; Hernández, S.; Myers-Ward, R.; Zabetakis, D.; Stenger, D.; Gaskill, D.; Walton, S. Plasma-Modified, Epitaxial Fabricated Graphene on SiC for the Electrochemical Detection of TNT. Sensors 2016, 16, 1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyakiti, L.O.; Wheeler, V.D.; Garces, N.Y.; Myers-Ward, R.L.; Eddy, C.R.; Gaskill, D.K. Enabling graphene-based technologies: Toward wafer-scale production of epitaxial graphene. Mrs Bull. 2012, 37, 1149–1157. [Google Scholar] [CrossRef]
- Lee, D.; Riedl, C.; Krauss, B.; von Klitzing, K.; Starke, U.; Smet, J. Raman Spectra of Epitaxial Graphene on SiC and of Epitaxial Graphene Transferred to SiO2. Nano Lett. 2008, 8, 4320–4325. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
Analyte | Peak Potential a | Response b | MSE c | Fitting Parameters | Baseline d | LOD e | ||
---|---|---|---|---|---|---|---|---|
a | b | x0 | ||||||
BPA | Epa = 0.540 | Hyperbolic | 74.6 | 6.9 × 10−3 | 7.2 × 10−4 | – | 0.99 | 120 |
CdCl2 | Epa = −0.756 | Sigmoidal | 27.5 | 36 | 240 | 820 | 1.96 | 320 |
CuSO4 | Epa = −0.228 | Hyperbolic | 126.2 | 4.4 × 10−3 | 2.8 × 10−4 | – | 1.15 | 140 |
DQBr2 | Epc = −0.536 | Hyperbolic | 90.3 | −0.079 | 3 × 10−3 | – | −4.41 | 130 |
HgCl2 | Epa = 0.108 | Linear | 38.1 | 0.0115 | 0.117 | 1.39 | 340 | |
MeP | Epa = 0.052 | Hyperbolic | 24.9 | 3.0 × 10−4 | 4.2 × 10−4 | – | 1.06 | 380 |
PbCl2 | Epa = −0.568 | Sigmoidal | 152.7 | 4.2 | 170 | 740 | 1.37 | 350 |
PQCl2 | Epc= −0.536 | Hyperbolic | 38.6 | −0.18 | 6.3 × 10−3 | – | −4.80 | 70 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shriver-Lake, L.C.; Myers-Ward, R.L.; Dean, S.N.; Erickson, J.S.; Stenger, D.A.; Trammell, S.A. Multilayer Epitaxial Graphene on Silicon Carbide: A Stable Working Electrode for Seawater Samples Spiked with Environmental Contaminants. Sensors 2020, 20, 4006. https://doi.org/10.3390/s20144006
Shriver-Lake LC, Myers-Ward RL, Dean SN, Erickson JS, Stenger DA, Trammell SA. Multilayer Epitaxial Graphene on Silicon Carbide: A Stable Working Electrode for Seawater Samples Spiked with Environmental Contaminants. Sensors. 2020; 20(14):4006. https://doi.org/10.3390/s20144006
Chicago/Turabian StyleShriver-Lake, Lisa C., Rachael L. Myers-Ward, Scott N. Dean, Jeffrey S. Erickson, David A. Stenger, and Scott A. Trammell. 2020. "Multilayer Epitaxial Graphene on Silicon Carbide: A Stable Working Electrode for Seawater Samples Spiked with Environmental Contaminants" Sensors 20, no. 14: 4006. https://doi.org/10.3390/s20144006
APA StyleShriver-Lake, L. C., Myers-Ward, R. L., Dean, S. N., Erickson, J. S., Stenger, D. A., & Trammell, S. A. (2020). Multilayer Epitaxial Graphene on Silicon Carbide: A Stable Working Electrode for Seawater Samples Spiked with Environmental Contaminants. Sensors, 20(14), 4006. https://doi.org/10.3390/s20144006