Comparison of Experimentally Determined Two-Dimensional Strain Fields and Mapped Ultrasonic Data Processed by Coda Wave Interferometry
Abstract
:1. Introduction
2. Principles of Measuring Methods
2.1. Strain Measurements
2.1.1. Fiber Optic Sensors
2.1.2. Digital Image Correlation
2.2. Ultrasound
3. Experiments
3.1. Method of Investigation
3.2. Test Set-Up
3.3. Results
3.3.1. Strain
3.3.2. Ultrasound
4. Comparison of US Results and Strain Fields
4.1. Non-Cracked to Slightly Cracked State
4.2. Completed Crack Pattern and Increasing Crack Widening
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
US | Ultrasonic |
CWI | Code Wave Interferometry |
DIC | Digital Image Correlation |
FOS | Fiber Optic Sensor |
RC | Reinforced Concrete |
NDT | Non-Destructive Testing |
References
- Löschmann, J.; Ahrens, M.A.; Dankmeyer, U.; Ziem, E.; Mark, P. Methods to reduce the partial safety factor concerning dead loads of existing bridges (Methoden zur Reduktion des Teilsicherheitsbeiwerts für Eigenlasten bei Bestandsbrücken). Beton- und Stahlbetonbau 2017, 112, 506–516. [Google Scholar] [CrossRef]
- Löschmann, J.; Stötzel, A.; Dankmeyer, U.; Mark, P. Gekoppelte Vermessungsstrategien für intelligente, digitale 3D-Stadtmodelle. Messtechnik Bauwesen 2018, 2018, 6–11. [Google Scholar]
- Heek, P.; Ahrens, M.A.; Mark, P. Incremental-iterative model for time-variant analysis of SFRC subjected to flexural fatigue. Mater. Struct. 2017, 50. [Google Scholar] [CrossRef]
- Obel, M.; Marwan, A.; Alsahly, A.; Freitag, S.; Mark, P.; Meschke, G. Damage assessment concepts for urban structures during mechanized tunneling (Schadensbewertungskonzepte für innerstädtische Bauwerke bei maschinellen Tunnelvortrieben). Bauingenieur 2018, 93, 482–491. [Google Scholar]
- Niederleithinger, E.; Wang, X.; Herbrand, M.; Müller, M. Processing Ultrasonic Data by Coda Wave Interferometry to Monitor Load Tests of Concrete Beams. Sensors 2018, 18, 1971. [Google Scholar] [CrossRef] [Green Version]
- Sanio, D.; Mark, P.; Ahrens, M.A. Computation of temperature fields on bridges—Implementation by means of spread-sheets (Temperaturfeldberechnung für Brücken). Beton- und Stahlbetonbau 2017, 112, 85–95. [Google Scholar] [CrossRef]
- Heek, P.; Tkocz, J.; Mark, P. A thermo-mechanical model for SFRC beams or slabs at elevated temperatures. Mater. Struct. 2018, 51, 87-1–87-16. [Google Scholar] [CrossRef]
- Sanio, D.; Ahrens, M.A.; Mark, P. Tackling uncertainty in structural lifetime evaluations—Assessment of the impact of monitoring data and correlated input parameters on a prognosis. Beton- und Stahlbetonbau 2018, 113, 48–54. [Google Scholar] [CrossRef]
- Sanio, D.; Löschmann, J.; Mark, P.; Ahrens, M.A. Measurements vs. analytical methods to evaluate fatigue of tendons in concrete bridges (Bauwerksmessungen versus Rechenkonzepte zur Beurteilung von Spannstahlermüdung in Betonbrücken). Bautechnik 2018, 95, 99–110. [Google Scholar] [CrossRef]
- Snieder, R. The Theory of Coda Wave Interferometry. Pure Appl. Geophys. 2006, 163, 455–473. [Google Scholar] [CrossRef]
- Fischer, O.; Thoma, S.; Crepaz, S. Distributed fiber optic sensing for crack detection in concrete structures (Quasikontinuierliche faseroptische Dehnungsmessung zur Rissdetektion in Betonkonstruktionen). Beton-und Stahlbetonbau 2019, 114, 150–159. [Google Scholar] [CrossRef]
- Fischer, O.; Thoma, S.; Crepaz, S. Distributed fiber optic sensing for crack detection in concrete structures. Civ. Eng. Des. 2019, 1, 97–105. [Google Scholar] [CrossRef]
- Speck, K.; Vogdt, F.; Curbach, M.; Petryna, Y. Fiber optic sensors for continuous strain measurement in concrete (Faseroptische Sensoren zur kontinuierlichen Dehnungsmessung im Beton). Beton- und Stahlbetonbau 2019, 114, 160–167. [Google Scholar] [CrossRef]
- Hugenschmidt, M. Lasermesstechnik: Diagnostik der Kurzzeitphysik; Springer-Lehrbuch; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef]
- Luna Innovations. Optical Distributed Sensor Interrogator Model ODiSI-B: User’s Guide; Version 5.2.1; ODiSI-B Software 5.2.0; Luna Innovations: Blacksburg, VA, USA, 2017. [Google Scholar]
- Luna Innovations. Distributed Fiber Optic Sensing: Temperature Coefficient for Polyimide Coated Low Bend Loss Fiber, in the −40 °C to 200 °C Range; Luna Innovations: Roanoke, VA, USA, 2014. [Google Scholar]
- Konertz, D.; Löschmann, J.; Clauß, F.; Mark, P. Fiber optic sensors for continuous strain measurement in concrete (Faseroptische Messung von Dehnungs- und Temperaturfeldern). Bauingenieur 2019, 94, 60–167. [Google Scholar]
- GOM. GOM Testing Technical Documentation since V8 SR1: Basics of Digital Image Correlation and Strain Calculation; (GOM Testing Technische Dokumentation ab V8 SR1: Grundlagen der digitalen Bildkorrelation und Dehnungsberechnung.); GOM GmbH: Braunschweig, Germany, 2016. [Google Scholar]
- Winter, D. Optische Verschiebungsmessung nach dem Objektrasterprinzip mit Hilfe eines flächenorientierten Ansatzes. Ph.D. Thesis, Technische Universität Carola-Wilhelmina zu Braunschweig, Braunschweig, Germany, 1993. [Google Scholar]
- Pacheco, C.; Snieder, R. Time-lapse travel time change of multiply scattered acoustic waves. J. Acoust. Soc. Am. 2005, 118, 1300–1310. [Google Scholar] [CrossRef] [Green Version]
- Poupinet, G.; Ellsworth, W.L.; Frechet, J. Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras Fault, California. J. Geophys. Res. Solid Earth 1984, 89, 5719–5731. [Google Scholar] [CrossRef] [Green Version]
- Roberts, P. Development of the active doublet method for monitoring small changes in crustal properties. Seismol. Res. Lett 1991, 62, 36–37. [Google Scholar]
- Snieder, R.; Grêt, A.; Douma, H.; Scales, J. Coda wave interferometry for estimating nonlinear behavior in seismic velocity. Science 2002, 295, 2253–2255. [Google Scholar] [CrossRef] [Green Version]
- Lobkis, O.I.; Weaver, R.L. Coda-Wave Interferometry in Finite Solids: Recovery of p-to-s Conversion Rates in an Elastodynamic Billiard. Phys. Rev. Lett. 2003, 90, 4. [Google Scholar] [CrossRef]
- Sens-Schönfelder, C.; Wegler, U. Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophys. Res. Lett. 2006, 33, L21302. [Google Scholar] [CrossRef]
- Larose, E.; Hall, S. Monitoring stress related velocity variation in concrete with a 2 × 10−5 relative resolution using diffuse ultrasound. J. Acoust. Soc. Am. 2009, 125, 1853–1856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Chakraborty, J.; Bassil, A.; Niederleithinger, E. Detection of Multiple Cracks in Four-Point Bending Tests Using the Coda Wave Interferometry Method. Sensors 2020, 20, 1986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, J.; Niederleithinger, E.; Mielentz, F.; Grothe, S.; Wiggenhauser, H. Monitoring of concrete constructions by embedded ultrasonic sensors (Überwachung von Betonkonstruktionen mit eingebetteten Ultraschallsensoren). Bautechnik 2014, 91, 783–796. [Google Scholar] [CrossRef]
- Zilch, K.; Zehetmaier, G. Bemessung im konstruktiven Betonbau: Nach DIN 1045-1 (Fassung 2008) und EN 1992-1-1 (Eurocode 2), 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- JCSS Joint Committee on Structural Safety. JCSS Probabilistic Model Code Part 3: Resistance Models; JCSS, 2001; Available online: https://www.jcss-lc.org/publications/jcsspmc/concrete.pdf (accessed on 20 July 2020).
- Niederleithinger, E.; Herbrand, M.; Müller, M. Monitoring of shear tests on prestressed concrete continuous beams using ultrasound and coda wave interferometry (Monitoring von Querkraftversuchen an Spannbetondurchlaufträgern mit Ultraschall und Codawelleninterferometrie). Bauingenieur 2014, 11, 474–481. [Google Scholar]
35.0 | 2.5 | 28,618 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clauß, F.; Epple, N.; Ahrens, M.A.; Niederleithinger, E.; Mark, P. Comparison of Experimentally Determined Two-Dimensional Strain Fields and Mapped Ultrasonic Data Processed by Coda Wave Interferometry. Sensors 2020, 20, 4023. https://doi.org/10.3390/s20144023
Clauß F, Epple N, Ahrens MA, Niederleithinger E, Mark P. Comparison of Experimentally Determined Two-Dimensional Strain Fields and Mapped Ultrasonic Data Processed by Coda Wave Interferometry. Sensors. 2020; 20(14):4023. https://doi.org/10.3390/s20144023
Chicago/Turabian StyleClauß, Felix, Niklas Epple, Mark Alexander Ahrens, Ernst Niederleithinger, and Peter Mark. 2020. "Comparison of Experimentally Determined Two-Dimensional Strain Fields and Mapped Ultrasonic Data Processed by Coda Wave Interferometry" Sensors 20, no. 14: 4023. https://doi.org/10.3390/s20144023
APA StyleClauß, F., Epple, N., Ahrens, M. A., Niederleithinger, E., & Mark, P. (2020). Comparison of Experimentally Determined Two-Dimensional Strain Fields and Mapped Ultrasonic Data Processed by Coda Wave Interferometry. Sensors, 20(14), 4023. https://doi.org/10.3390/s20144023