Grinding Wheel Loading Evaluation by Using Acoustic Emission Signals and Digital Image Processing
Abstract
:1. Introduction
2. Proposed Measurement Methodology and Experimental Setup
3. Experimental Results
3.1. AE Signals
3.2. Proposed Digital Image Processing Technique and Wheel Loading
3.3. Surface Roughness
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, H.Y.; Kim, S.R.; Ahn, J.H.; Kim, S.H. Process monitoring of centerless grinding using acoustic emission. J. Mater. Process. Technol. 2001, 111, 273–278. [Google Scholar] [CrossRef]
- Sato, B.K.; Rodriguez, R.L.; Talon, A.G.; Lopes, J.C.; de Mello, H.J.; Aguiar, P.R.; Bianchi, E.C. Grinding performance of AISI D6 steel using CBN wheel vitrified and resinoid bonded. Int. J. Adv. Manuf. Technol. 2019, 105, 2167–2182. [Google Scholar] [CrossRef]
- Lopes, J.C.; de Martini Fernandes, L.; Domingues, B.B.; Canarim, R.C.; de Penha Fonseca, M.C.F.; de Angelo Sanchez, L.E.; de Oliveira, R.F.M.; de Mello, H.J.; Bianchi, E.C. Effect of CBN grain friability in hardened steel plunge grinding. Int. J. Adv. Manuf. Technol. 2019, 103, 1567–1577. [Google Scholar] [CrossRef]
- Mokbel, A.A.; Maksoud, T.M.A. Monitoring of the condition of diamond grinding wheels using acoustic emission technique. J. Mater. Process. Technol. 2000, 101, 292–297. [Google Scholar] [CrossRef]
- Martins, C.H.R.; Aguiar, P.R.; Frech, A.; Bianchi, E.C. Tool condition monitoring of single-point dresser using acoustic emission and neural networks models. IEEE Trans. Instrum. Meas. 2014, 63, 667–679. [Google Scholar] [CrossRef]
- Hu, M.; Ming, W.; An, Q.; Chen, M. Tool wear monitoring in milling of titanium alloy Ti–6Al–4 V under MQL conditions based on a new tool wear categorization method. Int. J. Adv. Manuf. Technol. 2019, 104, 4117–4128. [Google Scholar] [CrossRef]
- Nakai, M.E.; Aguiar, P.R.; Guillardi, H.; Bianchi, E.C.; Spatti, D.H.; D’Addona, D.M. Evaluation of neural models applied to the estimation of tool wear in the grinding of advanced ceramics. Expert Syst. Appl. 2015, 42, 7026–7035. [Google Scholar] [CrossRef]
- Cameron, A.; Bauer, R.; Warkentin, A. An investigation of the effects of wheel-cleaning parameters in creep-feed grinding. Int. J. Mach. Tools Manuf. 2010, 50, 126–130. [Google Scholar] [CrossRef]
- Adibi, H.; Rezaei1, S.M.; Sarhan, A.A.D. Grinding wheel loading evaluation using digital image processing. J. Manuf. Sci. Eng. 2014, 136, 011012-1–011012-10. [Google Scholar] [CrossRef]
- Gift, F.C.; Force, E.; Misiolek, W.Z. Mechanics of loading for electroplated cubic boron nitride (CBN) wheels during grinding of a nickel-based superalloy in water-based lubricating fluids. ASME J. Tribol. 2004, 126, 795–801. [Google Scholar] [CrossRef]
- Adibi, H.; Rezaei, S.M.; Sarhan, A.A.D. Analytical modeling of grinding wheel loading phenomena. Int. J. Adv. Manuf. Technol. 2013, 68, 473–485. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, X.; Gindy, N. Investigation of acoustic emission signals under a simulative environment of grinding burn. Int. J. Mach. Tools Manuf. 2006, 46, 284–292. [Google Scholar] [CrossRef]
- Liu, C.S.; Li, Y.A. Evaluation of grinding wheel loading phenomena by using acoustic emission signals. Int. J. Adv. Manuf. Technol. 2018, 99, 1109–1117. [Google Scholar] [CrossRef]
- Susič, E.; Grabec, I. Characterization of the grinding process by acoustic emission. Int. J. Mach. Tools Manuf. 2000, 40, 225–238. [Google Scholar] [CrossRef]
- Liao, T.W.; Ting, C.F.; Quc, J.; Blau, P.J. A wavelet-based methodology for grinding wheel condition monitoring. Int. J. Mach. Tools Manuf. 2007, 47, 580–592. [Google Scholar] [CrossRef]
- Babel, R.; Koshy, P.; Weiss, M. Acoustic emission spikes at workpiece edges in grinding: Origin and applications. Int. J. Mach. Tools Manuf. 2013, 64, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Willett, P.; DeAguiar, P.R.; Webster, J. Neural network detection of grinding burn from acoustic emission. Int. J. Mach. Tools Manuf. 2001, 41, 283–309. [Google Scholar] [CrossRef]
- Dornfeld, D.; Cai, H.G. An investigation of grinding and wheel loading using acoustic emission. J. Eng. Ind. 1984, 106, 28–33. [Google Scholar] [CrossRef]
- Zhou, Z.; Rui, Y.; Cai, X.; Cheng, R.; Du, X.; Lu, J. A Weighted Linear Least Squares Location Method of an Acoustic Emission Source without Measuring Wave Velocity. Sensors 2020, 20, 3191. [Google Scholar] [CrossRef]
- Sutowski, P.; Swiecik, R. The estimation of machining results and efficiency of the abrasive electro-discharge grinding process of Ti6Al4V titanium alloy using the high-frequency acoustic emission and force signals. Int. J. Adv. Manuf. Technol. 2018, 94, 1263–1282. [Google Scholar] [CrossRef] [Green Version]
- Mei, Y.M.; Yu, Z.H.; Yang, Z.S. Experimental investigation of correlation between attrition wear and features of acoustic emission signals in single-grit grinding. Int. J. Adv. Manuf. Technol. 2017, 93, 2275–2287. [Google Scholar]
- Hwang, T.W.; Whitenton, E.P.; Hsu, N.N.; Blessing, G.V.; Evans, C.J. Acoustic emission monitoring of high speed grinding of silicon nitride. Ultrasonics 2000, 38, 614–619. [Google Scholar] [CrossRef]
- Susič, E.; Muzic, P.; Grabec, I. Description of ground surfaces based upon AE analysis by neural network. Ultrasonics 1997, 35, 547–549. [Google Scholar] [CrossRef]
- Webster, J.; Dong, W.P.; Lindsay, R. Raw acoustic emission signal analysis of grinding process. CIRP Ann-Manuf. Technol. 1996, 45, 335–340. [Google Scholar] [CrossRef]
- Kwak, J.S.; Song, J.B. Trouble diagnosis of the grinding process by using acoustic emission signals. Int. J. Mach. Tools Manuf. 2001, 41, 899–913. [Google Scholar] [CrossRef]
- Yossifon, S.; Rubenstein, C. The grinding of workpieces exhibiting high adhesion. part 1: Mechanisms. J. Eng. Ind. 1981, 103, 144–155. [Google Scholar] [CrossRef]
- Yossifon, S.; Rubenstein, C. The grinding of workpieces exhibiting high adhesion. part 2: Forces. J. Eng. Ind. 1981, 103, 156–164. [Google Scholar] [CrossRef]
- Aulestia Viera, M.A.; Aguiar, P.R.; Oliveira Junior, P.; Alexandre, F.A.; Lopes, W.N.; Bianchi, E.C.; da Silva, R.B.; D’addona, D.; Andreoli, A. A Time–Frequency Acoustic Emission-Based Technique to Assess Workpiece Surface Quality in Ceramic Grinding with PZT Transducer. Sensors 2019, 19, 3913. [Google Scholar] [CrossRef] [Green Version]
- Yao, C.; Wang, T.; Xiao, W.; Huang, X.; Ren, J. Experimental study on grinding force and grinding temperature of Aermet 100 steel in surface grinding. J. Mater. Process. Technol. 2014, 214, 2191–2199. [Google Scholar] [CrossRef]
- Sutowski, P.; Nadolny, K. The identification of abrasive grains in the decohesion process by acoustic emission signal patterns. Int. J. Adv. Manuf. Technol. 2016, 87, 437–450. [Google Scholar] [CrossRef] [Green Version]
- Li, X. A brief review: Acoustic emission method for tool wear monitoring during turning. Int. J. Mach. Tools Manuf. 2002, 42, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, Y.S.; Alam, M.S.; Arif, A.F.M.; Veldhuis, S.C. Use of acoustic emission and cutting force signals to monitor built-up edge formation in stainless steel turning. Int. J. Adv. Manuf. Technol. 2019, 103, 2257–2276. [Google Scholar] [CrossRef]
- Ibarra-Zarate, D.; Alonso-Valerdi, L.M.; Chuya-Sumba, J.; Velarde-Valdez, S.; Siler, H.R. Prediction of Inconel 718 roughness with acoustic emission using convolutional neural network based regression. Int. J. Adv. Manuf. Technol. 2019, 105, 1609–1621. [Google Scholar] [CrossRef]
- Nasir, V.; Cool, J.; Sassani, F. Acoustic emission monitoring of sawing process: Artificial intelligence approach for optimal sensory feature selection. Int. J. Adv. Manuf. Technol. 2019, 102, 4179–4197. [Google Scholar] [CrossRef]
- Pahuja, R.; Ramulu, M. Surface quality monitoring in abrasive water jet machining of Ti6Al4V–CFRP stacks through wavelet packet analysis of acoustic emission signals. Int. J. Adv. Manuf. Technol. 2019, 104, 4091–4104. [Google Scholar] [CrossRef]
- Guo, Q.; Pan, J.; Cai, M.; Zhang, Y. Investigating the effect of rock bridge on the stability of locked section slopes by the direct shear test and acoustic emission technique. Sensors 2020, 20, 638. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Xia, Z.; Si, Y.; Lu, Q.; Peng, Y. Noise Reduction of Welding Crack AE Signal Based on EMD and Wavelet Packet. Sensors 2020, 20, 761. [Google Scholar] [CrossRef] [Green Version]
- Kalo, K.; Niederer, D.; Sus, R.; Sohrabi, K.; Groß, V.; Vogt, L. Reliability of Vibroarthrography to Assess Knee Joint Sounds in Motion. Sensors 2020, 20, 1998. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Jin, X.; Wu, D.; Ye, H. Acoustic Emission Analysis of Corroded Reinforced Concrete Columns under Compressive Loading. Sensors 2020, 20, 2412. [Google Scholar] [CrossRef] [Green Version]
- Lefever, G.; Snoeck, D.; De Belie, N.; Van Vlierberghe, S.; Van Hemelrijck, D.; Aggelis, D.G. The Contribution of Elastic Wave NDT to the Characterization of Modern Cementitious Media. Sensors 2020, 20, 2959. [Google Scholar] [CrossRef]
- Luong, T.T.; Kim, J.-M. The Enhancement of Leak Detection Performance for Water Pipelines through the Renovation of Training Data. Sensors 2020, 20, 2542. [Google Scholar] [CrossRef] [PubMed]
- Wotzka, D.; Cichoń, A. Study on the Influence of Measuring AE Sensor Type on the Effectiveness of OLTC Defect Classification. Sensors 2020, 20, 3095. [Google Scholar] [CrossRef] [PubMed]
- Karpuschewski, B.; Knoche, H.-J.; Hipke, M. Gear finishing by abrasive processes. CIRP Ann-Manuf. Technol. 2008, 57, 621–640. [Google Scholar] [CrossRef]
- Available online: https://en.wikipedia.org/wiki/HSL_and_HSV (accessed on 16 July 2020).
- Gonzalez, R.; Woods, R.E. Digital Image Processing, 2nd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2002; p. 295. ISBN 0-201-18075-8. [Google Scholar]
- Ko, S.; Liu, C.S.; Lin, Y.C. Optical inspection system with tunable exposure unit for micro-crack detection in solar wafers. Optik 2013, 124, 4030–4035. [Google Scholar] [CrossRef]
- Liu, C.S.; Lin, Y.C.; Hu, P.H. Design and characterization of precise laser-based autofocusing microscope with reduced geometrical fluctuations. Microsyst. Technol. 2013, 19, 1717–1724. [Google Scholar] [CrossRef]
Variable | Corresponding Value |
---|---|
Machine | LGA-2812 |
Spindle speed | 2000 rpm |
Workpiece axis speed | Auto adjustment according to the grinding wheel speed |
Grinding wheel | KINIK 1A32A120J8V, Al2O3 |
Workpiece material | SCM415 |
Feedrate | 150 mm/min |
Cutting depth | 0.03 mm |
Cutting coolant | Yes |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.-S.; Ou, Y.-J. Grinding Wheel Loading Evaluation by Using Acoustic Emission Signals and Digital Image Processing. Sensors 2020, 20, 4092. https://doi.org/10.3390/s20154092
Liu C-S, Ou Y-J. Grinding Wheel Loading Evaluation by Using Acoustic Emission Signals and Digital Image Processing. Sensors. 2020; 20(15):4092. https://doi.org/10.3390/s20154092
Chicago/Turabian StyleLiu, Chien-Sheng, and Yang-Jiun Ou. 2020. "Grinding Wheel Loading Evaluation by Using Acoustic Emission Signals and Digital Image Processing" Sensors 20, no. 15: 4092. https://doi.org/10.3390/s20154092
APA StyleLiu, C. -S., & Ou, Y. -J. (2020). Grinding Wheel Loading Evaluation by Using Acoustic Emission Signals and Digital Image Processing. Sensors, 20(15), 4092. https://doi.org/10.3390/s20154092