Vibration Characterization of the Human Knee Joint in Audible Frequencies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Tape for Accelerometer Mounting
2.2. Linearity of the Human Knee Joint
2.3. Vibration Transmissibility of Human Knee Joint
3. Results
3.1. Selection of Tape for Accelerometer Mounting
3.2. Linearity of the Human knee Joint
3.2.1. Selection of excitation signal
3.2.2. Linearity Analysis
3.3. Vibration Transmissibility of the Human Knee Joint
3.3.1. Repeatability of Vibration Transmission Measurements
3.3.2. Inter-Subject Variation of Vibration Transmissibility
3.3.3. Effects of Knee Angle on Vibration Transmission
3.3.4. Vibration Transmissibility from 100 Hz to 10 kHz
4. Discussion and Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Abbott, L.C.; John, B.; Saunders, M.; Bost, F.C.; Anderson, C.E. Injuries to the ligaments of the knee joint. J. Bone Joint Surg. Am. 1944, 26, 503–521. [Google Scholar]
- Woolf, A.D.; Åkesson, K. Understanding the burden of musculoskeletal conditions. BMJ 2001, 322, 1079. [Google Scholar] [CrossRef] [PubMed]
- White, D.K.; Tudor-Locke, C.; Zhang, Y.; Fielding, R.; LaValley, M.; Felson, D.T.; Gross, K.D.; Nevitt, M.C.; Lewis, C.E.; Torner, J. Daily walking and the risk of incident functional limitation in knee osteoarthritis: An observational study. Arthritis Care Res. 2014, 66, 1328–1336. [Google Scholar] [CrossRef] [PubMed]
- McTimoney, M. Knee injuries. In The Adolescent Athlete; Micheli, L.J., Purcell, L., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 231–254. [Google Scholar]
- Sharkey, P.F.; Lichstein, P.M.; Shen, C.; Tokarski, A.T.; Parvizi, J. Why are total knee arthroplasties failing today—has anything changed after 10 years? J. Arthroplasty 2014, 29, 1774–1778. [Google Scholar] [CrossRef] [PubMed]
- Kernohan, W.G.; Beverland, D.E.; McCoy, G.F.; Hamilton, A.; Watson, P.; Mollan, R. Vibration arthrometry. Acta. Orthop. Scand. 1990, 61, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Chu, M.; Gradisar, I.; Mostardi, R. A noninvasive electroacoustical evaluation technique of cartilage damage in pathological knee joints. Med. Biol. Eng. Comput. 1978, 16, 437–442. [Google Scholar] [CrossRef]
- Teague, C.N.; Hersek, S.; Töreyin, H.; Millard-Stafford, M.L.; Jones, M.L.; Kogler, G.F.; Sawka, M.N.; Inan, O.T. Novel methods for sensing acoustical emissions from the knee for wearable joint health assessment. IEEE Trans. Biomed. Eng. 2016, 63, 1581–1590. [Google Scholar] [CrossRef]
- Whittingslow, D.C.; Jeong, H.-K.; Ganti, V.G.; Kirkpatrick, N.J.; Kogler, G.F.; Inan, O.T. Acoustic Emissions as a Non-invasive Biomarker of the Structural Health of the Knee. Ann. Biomed. Eng. 2020, 48, 225–235. [Google Scholar] [CrossRef]
- Fatemi, M.; Greenleaf, J.F. Vibro-acoustography: An imaging modality based on ultrasound-stimulated acoustic emission. PNAS 1999, 96, 6603–6608. [Google Scholar] [CrossRef] [Green Version]
- Fu, Z.-F.; He, J. Modal Analysis; Elsevier: Amsterdam, Netherlands, 2001; p. 304. [Google Scholar]
- Matsumoto, Y.; Griffin, M.J. Modelling the dynamic mechanisms associated with the principal resonance of the seated human body. Clin. Biomech. 2001, 16, S31–S44. [Google Scholar] [CrossRef]
- Eeg-Olofsson, M.; Stenfelt, S.; Tjellström, A.; Granström, G. Transmission of bone-conducted sound in the human skull measured by cochlear vibrations. Int. J. Audiol. 2008, 47, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, D.; Angevine, E. Hand-arm vibration, part II: Vibration transmission characteristics of the hand and arm. J. Sound Vib. 1977, 51, 255–265. [Google Scholar] [CrossRef]
- Adewusi, S.; Rakheja, S.; Marcotte, P.; Boutin, J. Vibration transmissibility characteristics of the human hand–arm system under different postures, hand forces and excitation levels. J. Sound Vib. 2010, 329, 2953–2971. [Google Scholar] [CrossRef]
- Huang, X.; Kwong, K.; Cheng, J. Acoustic transmission in normal human hips. In Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 23–28 July 2000; pp. 584–588. [Google Scholar]
- Conza, N.; Rixen, D.; Plomp, S. Vibration testing of a fresh-frozen human pelvis: The role of the pelvic ligaments. J. Biomech. 2007, 40, 1599–1605. [Google Scholar] [CrossRef] [PubMed]
- Soethoudt, A.; Conza, N.; Rixen, D. First steps to measure the dynamical properties of a human pelvis in vivo. In Proceedings of the 25th International Modal Analysis Conference, Orlando, Fl, USA, 3–6 February 2007. [Google Scholar]
- Christensen, A.; Ammitzbøll, F.; Dyrbye, C.; Cornelissen, M.; Cornelissen, P.; Van der Perre, G. Assessment of tibial stiffness by vibration testing in situ—I. Identification of mode shapes in different supporting conditions. J. Biomech. 1986, 19, 53–60. [Google Scholar] [CrossRef]
- Chu, M.L.; Yazdani-Ardakani, S.; Gradisar, I.A.; Askew, M.J. An in vitro simulation study of impulsive force transmission along the lower skeletal extremity. J. Biomech. 1986, 19, 979–987. [Google Scholar] [CrossRef]
- Dortmans, L.; Jans, H.; Sauren, A.; Huson, A. Nonlinear dynamic behavior of the human knee joint—Part I: Postmortem frequency domain analyses. J. Biomech. Eng. 1991, 113, 387–391. [Google Scholar] [CrossRef]
- Ewins, D.J. Modal Testing: Theory, Practice, And Application; Research Studies Press: Baldock, UK, 2000; p. 562. [Google Scholar]
- Gupta, R.; Chand, O. Study of signal denoising using Kaiser Window and Butterworth filter. Int. J. Electron. Comput. Sci. Eng. 2012, 1, 1087–1091. [Google Scholar]
- Avitabile, P. Modal Testing: A Practitioner’s Guide; John Wiley & Sons: Hoboken, NJ, USA, 2017; p. 544. [Google Scholar]
- Guillaume, P.; Pintelon, R.; Schoukens, J. On the use of signals with a constant signal-to-noise ratio in the frequency domain. IEEE Trans. Instrum. Meas. 1990, 39, 835–842. [Google Scholar] [CrossRef]
- Gomes, H.M.; Savionek, D. Measurement and evaluation of human exposure to vibration transmitted to hand-arm system during leisure cyclist activity. Revista Brasileira de Engenharia Biomédica 2014, 30, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Ito, K.; Nakagawa, S. Assessment of linearity of bone-conducted ultrasound transmission in the human head. Jpn. J. Appl. Phys. 2011, 50, 07HF04. [Google Scholar] [CrossRef]
- Schoukens, J.; Pintelon, R.; Rolain, Y. Broadband versus stepped sine FRF measurements. In Proceedings of the IMTC/99, 16th IEEE Instrumentation and Measurement Technology Conference, Venice, Italy, 24–26 May 1999; pp. 1070–1074. [Google Scholar]
- Håkansson, B.; Carlsson, P.; Brandt, A.; Stenfelt, S. Linearity of sound transmission through the human skull in vivo. J. Acoust. Soc. Am. 1996, 99, 2239–2243. [Google Scholar] [CrossRef] [PubMed]
- Duck, F.A. Physical Properties Of Tissues: A Comprehensive Reference Book; Academic Press: London, UK, 2013; p. 346. [Google Scholar]
- Redl, C.; Gfoehler, M.; Pandy, M.G. Sensitivity of muscle force estimates to variations in muscle–tendon properties. Hum. Movement Sci. 2007, 26, 306–319. [Google Scholar] [CrossRef]
- Gerus, P.; Sartori, M.; Besier, T.F.; Fregly, B.J.; Delp, S.L.; Banks, S.A.; Pandy, M.G.; D’Lima, D.D.; Lloyd, D.G. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces. J. Biomech. 2013, 46, 2778–2786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, K.M.; Paskaleva, A.; House, M.; Socrate, S. Mechanical and biochemical properties of human cervical tissue. Acta. Biomater. 2008, 4, 104–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daly, C.H.; Odland, G.F. Age-related changes in the mechanical properties of human skin. J. Invest. Dermatol. 1979, 73, 84–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saliba, C.M.; Brandon, S.C.; Deluzio, K.J. Sensitivity of medial and lateral knee contact force predictions to frontal plane alignment and contact locations. J. Biomech. 2017, 57, 125–130. [Google Scholar] [CrossRef]
- Zhao, D.; Banks, S.A.; Mitchell, K.H.; D’Lima, D.D.; Colwell, C.W., Jr.; Fregly, B.J. Correlation between the knee adduction torque and medial contact force for a variety of gait patterns. J. Orthop. Res. 2007, 25, 789–797. [Google Scholar] [CrossRef]
- Cornelissen, M.; Cornelissen, P.; Van der Perre, G.; Christensen, A.; Ammitzboll, F.; Dyrbye, C. Assessment of tibial stiffness by vibration testing in situ—III. Sensitivity of different modes and interpretation of vibration measurements. J. Biomech. 1987, 20, 333–342. [Google Scholar] [CrossRef]
- Almeida, R.; Urgueira, A.; Maia, N. Identification of rigid body properties from vibration measurements. J. Sound Vib. 2007, 299, 884–899. [Google Scholar] [CrossRef]
- Loeser, R.F. Age-related changes in the musculoskeletal system and the development of osteoarthritis. Clin. Geriatr. Med. 2010, 26, 371–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Signal Number | Frequency Range (Hz) | Amplitude (V) | Duration (ms) | Number of Frequencies | Frequency Resolution (Hz) | Number of Repetitions |
---|---|---|---|---|---|---|
1 | 100–200 | 0.8 | 500 | 51 | 2 | 5 |
2 | 200–400 | 1.0 | 250 | 51 | 4 | 20 |
3 | 400–800 | 1.2 | 125 | 51 | 8 | 40 |
4 | 800–1600 | 1.3 | 62.5 | 51 | 16 | 120 |
5 | 1600–3200 | 1.6 | 31.25 | 51 | 32 | 280 |
6 | 3200–6400 | 3.3 | 15.625 | 51 | 64 | 2000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safaei, M.; Bolus, N.B.; Erturk, A.; Inan, O.T. Vibration Characterization of the Human Knee Joint in Audible Frequencies. Sensors 2020, 20, 4138. https://doi.org/10.3390/s20154138
Safaei M, Bolus NB, Erturk A, Inan OT. Vibration Characterization of the Human Knee Joint in Audible Frequencies. Sensors. 2020; 20(15):4138. https://doi.org/10.3390/s20154138
Chicago/Turabian StyleSafaei, Mohsen, Nicholas B. Bolus, Alper Erturk, and Omer T. Inan. 2020. "Vibration Characterization of the Human Knee Joint in Audible Frequencies" Sensors 20, no. 15: 4138. https://doi.org/10.3390/s20154138
APA StyleSafaei, M., Bolus, N. B., Erturk, A., & Inan, O. T. (2020). Vibration Characterization of the Human Knee Joint in Audible Frequencies. Sensors, 20(15), 4138. https://doi.org/10.3390/s20154138