Graphene-Based and Surface-Enhanced Raman Spectroscopy for Monitoring the Physio-Chemical Response of Thermophilic Bacterial Spores to Low Temperatures Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spore Cultivation and Collection
2.2. Graphene-Based pH Physiometer
2.3. Surface-Enhanced Raman Spectroscopy
2.4. Data Analysis
2.5. GbRS and SERS Advantages and Drawbacks
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References and Note
- Zagorski, Z.P. Question 2: Relation of panspermia-hypothesis to astrobiology. Orig. Life Evol. Biosph. 2007, 37, 351–355. [Google Scholar] [CrossRef]
- Setlow, P. Germination of spores of bacillus species: What we know and do not know. J. Bacteriol. 2014, 196, 1297–1305. [Google Scholar] [CrossRef] [Green Version]
- Van Haute, S.; Luo, Y.; Bolten, S.; Gu, G.; Nou, X.; Millner, P. Survival of Salmonella enterica and shifts in the culturable mesophilic aerobic bacterial community as impacted by tomato wash water particulate size and chlorine treatment. Food Microbiol. 2020, 90, 103470. [Google Scholar] [CrossRef]
- Vidic, J.; Chaix, C.; Manzano, M.; Heyndrickx, M. Food sensing: Detection of Bacillus cereus spores in dairy products. Biosensors 2020, 10, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evelyn, E.; Silva, F.V.M. Heat assisted HPP for inactivation of bacteria, moulds and yeasts spores in foods: Log reductions and mathematical models. Trends Food Sci. Technol. 2019, 88, 16. [Google Scholar] [CrossRef]
- Oliveira, R.B.A.; Margalho, L.P.; Nascimento, J.S.; Costa, L.E.O.; Portela, J.B.; Cruz, A.G.; Sant’Ana, A.S. Processed cheese contamination by spore-forming bacteria: A review of source, routes, fate during processing and control. Trends Food Sci. Technol. 2016, 57, 11–19. [Google Scholar] [CrossRef]
- Eckert, J.; Ratnayake, M. Role of volatile compounds from wounded oranges in induction of germination of Penicillum digitatum Conidia. Phytopathology 1994, 84, 746–750. [Google Scholar] [CrossRef]
- Wuytack, E.Y.; Boven, S.; Michiels, C.W. Comparative study of pressure-induced germination of Bacillus subtilis spores at low and high pressure. Appl. Environ. Microbiol. 1998, 64, 3220–3224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolher, L.J.; Quirk, A.V.; Welkos, S.L.; Cote, C.K. Incorporating germination-induction into decontamination strategies for bacterial spores. J. Appl. Microbiol. 2017, 124, 2–14. [Google Scholar]
- Sánchez-Clemente, R.; Igeño, M.I.; Poblatión, A.G.; Guijo, M.I.; Merchán, F.; Blasco, R. Study of pH changes in media during bacterial growth of several environmental strains. Proceedings 2018, 2, 1297. [Google Scholar] [CrossRef] [Green Version]
- Paulus, G.L.C.; Nelson, J.T.; Lee, K.Y.; Wang, Q.H.; Reuel, N.F.; Grassbaugh, B.R.; Kruss, S.; Landry, M.P.; Kang, J.W.; Ende, E.V.; et al. A graphene-based physiometer array for the analysis of single biological cells. Sci. Rep. 2014, 4, 6865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, A.; Pisana, S.; Chakraborty, B.; Pisanec, S.; Saha, S.K.; Waghmare, U.V.; Novoselov, K.S.; Krishnamurthy, H.R.; Geim, A.K.; Ferrari, A.C.; et al. Monitoring dopants by Raman scattering in a electrochemical top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camerlingo, C.; Verde, A.; Manti, L.; Meschini, R.; Delfino, I.; Lepore, M. Graphene-based Raman spectroscopy for pH sensing of X-rays exposed and unexposed culture media and cells. Sensors 2018, 18, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romano, I.; De Angelis, A.; Poli, A.; Ragni, P.; Lilla, L.; Zito, G.; Nicolaus, B.; De Luca, A.; Di Donato, P. Resistance and Raman spectroscopy analysis of Parageobacillus thermantarcticus spores after γ-ray exposure. Extremophiles 2018, 22, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Setlow, P.; Li, Y.-Q. Analysis of the Raman spectra of Ca2+-dipinolinic acid alone and in the bacterial spore core in both aqueous and deydrated environments. Analyst 2012, 137, 3683. [Google Scholar] [CrossRef]
- Esposito, A.P.; Talley, C.E.; Huser, T.; Hollars, C.W.; Schaldach, C.M.; Lane, S.M. Analysis of single bacterial spores by micro-Raman spectroscopy. Appl. Spectrosc. 2003, 57, 868–871. [Google Scholar] [CrossRef]
- Huang, S.-S.; Chen, D.; Pelczar, P.L.; Vepachedu, V.R.; Setlow, P.; Li, Y.-Q. Levels of Ca2+-dipinolinic acid in individual Bacillus spores determined using microfluidic Raman twizeers. J. Bacteriol. 2007, 189, 4681–4687. [Google Scholar] [CrossRef] [Green Version]
- Guicheteau, J.; Argue, L.; Emge, D.; Hyre, A.; Jacobson, M.; Christesen, S. Bacillus spores classification via surface-enhanced Raman spectroscopy and principal component analysis. Appl. Spectrosc. 2007, 62, 267–272. [Google Scholar] [CrossRef]
- Farquharson, S.; Shende, C.; Gift, A.; Inscore, F. Detection of Bacillus Spores by Surface-Enhanced Raman Spectroscopy. 2012. Available online: http://www.intechopen.com/books/bioterrorism/detection-of-bacillus-spores-by-surface-enhanced-raman-spectroscopy (accessed on 26 July 2020).
- Schlücker, S. Surface-Enhanced Raman Spectroscopy: Concepts and chemical applications. Angew. Chem. Int. Ed. 2014, 53, 4756–4795. [Google Scholar] [CrossRef]
- Read, L.; Lewis, S.R.; Mulholland, D.P. The physics of Martian weather and climate: A review. Rep. Prog. Phys. 2015, 78, 125901. [Google Scholar] [CrossRef] [Green Version]
- Finore, I.; Lama, L.; Di Donato, P.; Romano, I.; Tramice, A.; Leone, L.; Nicolaus, B.; Poli, A. Parageobacillus thermantarcticus, an Antarctic cell factory: From crop residue valorization by green chemistry to astrobiology studies. Diversity 2019, 11, 128. [Google Scholar] [CrossRef] [Green Version]
- Mastascusa, V.; Romano, I.; Di Donato, P.; Poli, A.; Della Corte, V.; Rotundi, A.; Bussoletti, E.; Quarto, M.; Pugliese, M.; Nicolaus, B. Extremophiles survival to simulated space conditions: An astrobiology model study. Orig. Life Evol. Biosph. 2014, 44, 231–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Donato, P.; Romano, I.; Mastascusa, V.; Poli, A.; Orlando, P.; Pugliese, M.; Nicolaus, B. Survival and adaptation of the thermophilic species Geobacillus thermantarcticus in simulated spatial conditions. Orig. Life Evol. Biosph. 2018, 48, 141–158. [Google Scholar] [CrossRef] [PubMed]
- Camerlingo, C.; Portaccio, M.; Taté, R.; Lepore, M.; Delfino, I. Fructose and pectin detection in fruit-based food products by Surface-Enhanced Raman Spectroscopy. Sensors 2017, 17, 839. [Google Scholar] [CrossRef] [Green Version]
- Camerlingo, C.; Lisitskiy, M.; Lepore, M.; Portaccio, M.; Montorio, D.; Del Prete, S.; Cennamo, G. characterization of human tear fluid by means of Surface-enhanced Raman spectroscopy. Sensors 2019, 19, 1177. [Google Scholar] [CrossRef] [Green Version]
- Lasch, P. Spectral pre-processing for biomedical vibrational spectroscopy and micro-spectroscopic imaging. Chemometr. Intell. Lab. Syst. 2013, 117, 100–114. [Google Scholar] [CrossRef] [Green Version]
- Gautam, R.; Vanga, S.; Ariese, F.; Umapathy, S. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Tech. Instrum. 2015, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Doona, C.J.; Setlow, P.; Li, Y.-. q Use of Raman spectroscopy and phase-contrast microscopy to characterize cold atmospheric plasma Inactivation of individual bacterial spores. Appl. Environ. Microbiol. 2016, 82, 5775–5784. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [Green Version]
- The value of n was estimated using the relation n = (6817.6 + 8.63νG − 0.0027)1013, that approximates the experimental dependence of Ref. [12] for n in the range between −4 × 1012 and −25 × 1012 cm−2.
- Reineke, K.; Mathys, A.; Heinz, V.; Knorr, D. Mechanisms of endospore inactivation under high pressure. Trends Microbiol. 2013, 21, 296–304. [Google Scholar] [CrossRef]
- Nguyen thi Minh, H.; Dantigny, P.; Perrier-Cornet, J.M.; Gervais, P. Germination and inactivation of Bacillus subtilis induced by moderate hydrostatic pressure. Biotechnol. Bioeng. 2010, 107, 867–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagen, C.A.; Godfrey, J.F.; Green, R.H. The effect of temperature on the survival of microorganisms in a deep space vacuum. Space Life Sci. 1971, 3, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Deng, K.; Plaza-Garrido, A.; Torres, J.A.; Paredes-Sabja, D. Survival of Clostridium difficile spores at low temperatures. Food Microbiol. 2015, 46, 218–221. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camerlingo, C.; Di Meo, G.; Lepore, M.; Lisitskiy, M.; Poli, A.; Portaccio, M.; Romano, I.; Di Donato, P. Graphene-Based and Surface-Enhanced Raman Spectroscopy for Monitoring the Physio-Chemical Response of Thermophilic Bacterial Spores to Low Temperatures Exposure. Sensors 2020, 20, 4150. https://doi.org/10.3390/s20154150
Camerlingo C, Di Meo G, Lepore M, Lisitskiy M, Poli A, Portaccio M, Romano I, Di Donato P. Graphene-Based and Surface-Enhanced Raman Spectroscopy for Monitoring the Physio-Chemical Response of Thermophilic Bacterial Spores to Low Temperatures Exposure. Sensors. 2020; 20(15):4150. https://doi.org/10.3390/s20154150
Chicago/Turabian StyleCamerlingo, Carlo, Giuseppe Di Meo, Maria Lepore, Mikhail Lisitskiy, Annarita Poli, Marianna Portaccio, Ida Romano, and Paola Di Donato. 2020. "Graphene-Based and Surface-Enhanced Raman Spectroscopy for Monitoring the Physio-Chemical Response of Thermophilic Bacterial Spores to Low Temperatures Exposure" Sensors 20, no. 15: 4150. https://doi.org/10.3390/s20154150
APA StyleCamerlingo, C., Di Meo, G., Lepore, M., Lisitskiy, M., Poli, A., Portaccio, M., Romano, I., & Di Donato, P. (2020). Graphene-Based and Surface-Enhanced Raman Spectroscopy for Monitoring the Physio-Chemical Response of Thermophilic Bacterial Spores to Low Temperatures Exposure. Sensors, 20(15), 4150. https://doi.org/10.3390/s20154150