3.1. Surface Analysis of Graphene
The survey scans of XPS spectrum on the pristine, oxygenated and fluorinated graphene sheets are shown in
Figure 1a. The atomic ratio of oxygen atoms was increased to 24.07% on the oxygenated graphene sheets, as compared to that of pristine graphene (21.42%), using plasma treatment for 10 s. The main carbon C 1s from the oxygenated graphene was deconvoluted with four components that denoted carbon atoms in four specific functional groups [
19]. The four peaks were associated with the graphitic peak (C-C/C=C), hydroxyl groups (C-OH), carbonyl groups (C=O), carboxyl groups (O=C-OH) at 284.67, 286.6, 288.9 and 290.67 eV, respectively. A satellite of the graphitic peak (π-π) was also found at 291.72 eV, as shown in
Figure 1b. The main carbon C 1s from the pristine and fluorinated graphene were shown in our previous work [
20].
Fluorinated graphene has received attention in a variety of applications, including self-cleaning, super-hydrophobic coatings and electrochemical electrodes, because fluorinated graphene has low surface energy, high chemical stability and temperature stability [
19,
21,
22]. The plasma treatment in fluorine gas (SF
6, CF
4, C
4F
8, and C
3F
8) environment is considered a clean method for manufacturing fluorinated graphene [
19,
22]. The fluorinated graphene has three types of bonding properties, such as ionic, semi-ionic, and covalent C-F bonds depending on the plasma condition [
23]. These bonding properties are characterized with XPS spectrum analysis. The deconvolution of F 1s peak defines the three types of C-F bonds; ionic (684 eV), semi-ionic (686–687 eV), and covalent bond (689–691 eV) [
23,
24]. When the graphene sheet was functionalized with fluorine for 20 min, the atomic ratio of fluorine was 49.8% and the content of oxygen clearly decreased because the oxygen atoms were substituted by carbon or fluorine, as shown in
Figure 1b and
Figure S1. The main fluorine F 1s from fluorinated graphene was deconvoluted with three components that denoted fluorine atoms in three specific functional groups [
22]. The three peaks were associated with the ionic bond (2.8%) at 684.8 eV, semi-ionic bond (93.8%) at 687.3 eV, and covalent bond (3.4%) at 689.4 eV, respectively, as shown in
Figure 1c. As a result of plasma treatment for 20 min in a C
3F
8 gas environment, the graphene sheet was functionalized with three types of fluorine bonds, and the dominant type of fluorine bond was semi-ionic C-F bonding. The ionic or semi-ionic C-F bonds on graphene sheet have conductivity like a metal or semiconductor, respectively [
22], and the covalent C-F bond on the graphene sheet is an insulator [
24].
The Raman spectra of the pristine, oxygenated and fluorinated graphene sheets are shown in
Figure 1d. The G and 2D peaks of the pristine graphene sheet were centered at 1585 and 2700 cm
−1, respectively. The D peak caused by defects at 1358 cm
−1 was observed. The area intensity ratio (I
G/I
2D) of pristine was 0.4. The pristine graphene sheet was monolayer [
25]. After fluorination using plasma treatment, the G and 2D peaks shifted 1589 and 2709 cm
−1. The I
G/I
2D was 0.46 and the intensity of the D peak was slightly greater than that of the pristine graphene. However, the I
G/I
2D of oxygenated graphene was 0.55 and the D peak was highly increased. After oxygenation, D’ peak appears at ~1620 cm
−1, which originate from double-resonance processes at the K point in the presence of defects intravalley phonon. The increased D peak of oxygenated graphene was partially etched and the defect was increased by the plasma oxygenation process. The full width at half-maximum (FWHM) of the 2D peak of pristine and fluorinated graphene was ~36 cm
−1, and after oxygenation this increased to ~41 cm
−1. The hall measurement was conducted to evaluate the conductivity of the pristine, fluorinated and oxygenated graphene sheets. The sheet resistance of the pristine and fluorinated graphene sheets was 475 and 603 Ω/sq, respectively. The sheet resistance was increased by fluorination due to the covalent C-F bond (3.4%), which was consistent with XPS and Raman spectra. The sheet resistance of the oxygenated graphene sheet was 1.99 KΩ/sq. The high sheet resistance of oxygenated graphene was due to the change in the carbon structure from an sp
2-hybridized carbon structure to an sp
3-hybridized carbon structure by the oxygenation.
3.2. The pH Sensitivity in Each Functionalized G-ISFET
Although the two-channel G-SGFET was fabricated for pH sensing without a reference electrode, each functionalized G-ISFET works like a conventional ISFET with an Ag/AgCl reference electrode. As shown in
Figure 2a, the pH sensitivity of each functionalized G-ISFET was evaluated. The G-ISFET is characterized by the drain–source current (
IDS), drain–source voltage (
VDS), and gate–source voltage (
VGS) in the electrolyte solution. After the pH buffer exchange, the sensor was stabilized for 2 min before the steady-state electrical measurements of the transfer characteristics were conducted. To obtain the
IDS–VDS characteristics of the oxygenated graphene channel,
VDS was swept from 0.0 to 0.7 V in a buffer solution of pH 8.
IDS increased with respect to
VGS at the n-channel region, as shown in
Figure 2b.
The strength of
IDS in the oxygenated gate channel was low compared to the strength of
IDS in the pristine gate channel (not shown). The conductivity of the oxidized gate channel was decreased by partial substitution from the sp
2-hybridized carbon structure to the sp
3-hybridized carbon structure by oxygenation of the graphene sheet, and an amorphous carbon structure exists due to the collision of oxygen ions on the oxidized gate channel surface after plasma treatment [
26]. The sp
3-hybridized carbon structure on the graphene sheet is an insulator [
27,
28].
VDS was fixed at 0.05 V and
VGS was swept from 0.0 to 0.6 V to assess the
IDS–VGS characteristics of the G-ISFET in the pH buffer solution. The value of
VGS at the lowest value of
IDS is known as the Dirac point (
VDirac), which is the switching point between the hole and electron carriers [
29]. The pH sensitivity of the G-ISFET was evaluated by the shift of
VDirac in the pH buffer solution. The
VDirac was shifted by 19.4 mV/pH in the positive direction over the range of pH values from 4 to 10 in oxygenated G-ISFET, as shown in
Figure 2c. There are some defects on the oxygenated graphene surface and edge, which are induced during oxygen plasma treatment. These defects, hydroxyl and carbonyl groups, can react with the protons in the electrolyte solution (protonation or deprotonation), leading to pH sensitivity in the oxygenated graphene. To confirm the reliability of the pH sensitivity in the oxygenated G-ISFET,
VGS was swept with forward and backward bias to assess the
IDS–VGS characteristics of the G-ISFET (
Figure S2a,b). The
VDirac was shifted depending on the pH value in the buffer solution, regardless of the bias direction. However, hysteresis was shown along the
VGS sweep direction (
Figure S2c,d). This is because the mobility of the ions in the solution is slow, so the ions do not move quickly along the
VGS sweep direction.
The conductivity of the fluorine-functionalized graphene sheet with a semi-ionic bond is that of a semiconductor [
21]. To obtain the
IDS–VDS characteristics of the fluorinated graphene channel in a buffer solution of pH 8,
VDS was swept from 0.0 to 0.7 V. The fluorinated gate channel of the G-ISFET worked stably in the electrolyte solution and
IDS increased depending on the value of
VGS at the n-channel region, as shown in
Figure 3a. However,
VDirac did not shift over the range of pH values from 4 to 10 in the fluorinated G-ISFET, as shown in
Figure 3b. The fluorinated G-ISFET was insensitive to pH. The gate leakage current (
IGS) of the fluorinated G-ISFET was 16.48 nA. The pH sensitivity was shown with a different F/C ratio on the fluorinated graphene surface (
Figure S3). We typically conducted the
IDS–VGS transfer characteristics of the fluorinated G-ISFET to assess the cation and anion sensitivity by KCl concentration and to evaluate the interfacial potential according to the ionic strength in Tris buffer solution. The fluorinated G-ISFET was insensitive to K
+ and Cl
− ions and worked stably in Tris buffer solution regardless of ionic strength (
Figure S4a,b). This fluorinated gate channel has the potential to be used as a reference electrode in pH-sensing devices to probe electrostatic potential in the electrolyte solution.
The real-time pH sensitivity of the oxygenated G-ISFET with Ag/AgCl reference electrode was evaluated.
VGS was continuously measured at fixed values of
IDS and
VDS on the
IDS–VGS characteristics with periodic injection of buffer solutions with different pH values every 2 min for 10 min.
VDS was maintained as constant, which was chosen so as to bias the device in strong inversion. The results of real-time measurements on the oxygenated G-ISFET with buffer solutions of different pH values are shown in
Figure 4a. In the n-channel region,
VGS increases in the high-pH buffer solution to maintain
IDS (40 µA) at a fixed value of
VDS (0.05 V) on the oxygenated gate channel because the surface charge on the oxygenated gate channel was negative, owing to deprotonation in the high-pH buffer solution. On the other hand, the surface charge is positive owing to protonation in the low-pH buffer solution, and
VGS decreases to maintain
IDS at the fixed value of
VDS. The results of real-time measurements on the fluorinated G-ISFET in different pH buffer solutions are shown in
Figure 4b.
VGS was continuously measured at fixed values of
IDS (150 µA) and
VDS (0.05 V) in the
IDS–VGS characteristics with periodic injection of buffer solutions with different pH values every 2 min for 10 min. The fluorinated G-ISFET was insensitive to pH, which was in agreement with the static characteristics.
We evaluated the long-term stability of oxygenated G-ISFET in a buffer solution of pH 8 in real-time, similar to the drift characteristics of the ISFET.
VGS was continuously measured to keep
IDS at 135 µA and
VDS at 0.05 V in the
IDS–VGS characteristics.
VGS was continuously maintained at the voltage of 159 ± 4.38 mV for 60 min, as shown in
Figure 4c.
3.3. Two-Channel G-SGFET
We fabricated a two-channel G-SGFET, as shown in
Figure 5a. One channel is the oxygenated channel that serves as a sensing G-ISFET and the other channel is a fluorinated channel that serves as an Ag/AgCl reference electrode. The fluorinated graphene electrode was placed close enough to the sensing G-ISFET so that its fixed potential could control the operation of the G-ISFET. It should be noted that both the sensing channel and fluorinated graphene reference electrode were in direct contact with the electrolyte solution.
In the two-channel G-SGFET,
VGS is the voltage between the fluorinated graphene reference electrode and the source electrode of G-ISFET (
VFS), which is the same as when an Ag/AgCl reference electrode is used, as shown in
Figure 3a. The
IDS–VDS characteristics of the two-channel G-SGFET in a buffer solution of pH 8 are shown in
Figure 5b.
VDS was swept from 0.0 to 0.7 V and
IDS was increased with respect to
VGS (0.5, 0.6, and 0.7 V) in the n-channel region. To obtain the
IDS–VGS characteristics of the two-channel G-SGFET in the pH buffer solution,
VDS was fixed at 0.05 V and
VGS was swept from 0.0 to 0.65 V. The transfer characteristics showed ambipolar graphene FET behavior (p-channel and n-channel), which is a typical characteristic curve of the G-ISFET, and
VDirac of the two-channel G-SGFET was shifted by 18.2 mV/pH in the positive direction over the range of pH values from 4 to 10, as shown in
Figure 5c. The
IDS–VDS characteristics of the two-channel G-SGFET in the pH buffer solution,
VGS was fixed at 0.4 V and
VDS was swept from 0.0 to 0.7 V, are shown in
Figure 5d.
IDS depended on the pH value in the electrolyte solution. We fabricated 5 samples to evaluate the reproducibility of pH sensitivity on the two-channel G-SGFET. The two-channel G-SGFET was sensitive to pH regardless of the sample, as shown in
Figure 5e. The average pH sensitivity of the two-channel G-SGFET at pH 4–6 was 49.9 mV, at pH 6–8, the pH sensitivity was 33.5 mV, and at pH 8–10, the pH sensitivity was 28.8 mV. The pH sensitivity is high in the acidic region, which is similar to the use of Ag/AgCl reference electrode on the oxygenated G-ISFET. The Dirac point of the two-channel G-SGFET in the same pH solution varies from sample to sample because sensor samples are made manually at the lab level.
The voltage between the G-ISFET and the fluorinated graphene reference electrode was set with respect to the sensing channel and the reference electrode interface. Considering
VFS in the fluorinated graphene reference electrode, the change in the surface charge in the sensing channel results in the variation of the voltage between the sensing channel and the fluorinated graphene reference electrode. The bulk potential of the solution is determined by
VFS in the fluorinated graphene reference electrode with electrostatic equilibrium and capacitive coupling. Therefore, the voltage between the sensing channel and the fluorinated graphene reference electrode is the only parameter related to the concentration of protons ([H
+]) in the electrolyte solution. The change in proton concentration in the electrolyte solution leads to the variation of the surface charge by protonation or deprotonation on the sensing channel and modulates the channel conductance of the oxygenated channel in the two-channel G-SGFET. The variation of
VDirac on the two-channel G-SGFET can be expressed as follows:
where
VpHO is the pH sensitivity of the oxygenated sensing channel,
VS is the potential of the source electrode,
VpHF is the pH sensitivity of the fluorinated graphene reference electrode, and
VF is the potential of the fluorinated graphene reference electrode in the two-channel G-SGFET. The pH sensitivity of the two-channel G-SGFET is determined by the differential response between the oxygenated sensing channel (
VpHO) and the fluorinated reference electrode (
VpHF). The pH sensitivity of the two-channel G-SGFET is lower than when the Ag/AgCl reference electrode is used because the fluorinated graphene reference electrode has some defect, such as an sp
3-hybridized carbon structure (3.4% covalent bond) and an amorphous carbon structure. These defects are unstable in the electrolyte solution.
The real-time pH sensitivity of the two-channel G-SGFET was measured over the range of pH values from 4 to 10.
VGS was continuously measured at the fixed values of
IDS (150 µA) and
VDS (0.05 V) on the
IDS–VGS characteristic with periodic injection of buffer solutions with different pH values every 2 min for 10 min. These conditions were the same as that when an Ag/AgCl reference electrode was used. The real-time pH sensitivity and hysteresis of the two-channel G-SGFET with different pH buffer solutions was shown in
Figure 6a and
Figure S5a. In the n-channel region,
VGS increased in the high-pH buffer solution to maintain
IDS at a fixed value of
VDS in the two-channel G-SGFET because the surface charge of the oxygenated gate channel became negative by deprotonation in the high-pH buffer solution. On the other hand, the surface charge is positive by protonation in the low-pH buffer solution and
VGS decreases to maintain
IDS at a fixed value of
VDS. We evaluate the long-term stability of the two-channel G-SGFET in the buffer solution of pH 8 in real-time.
VGS was continuously measured to keep
IDS (130 µA) at a fixed value of
VDS (0.05 V) in the
IDS–VGS characteristics.
VGS is continuously maintained at the voltage of 183 ± 9.2 mV for 60 min, which is similar to using an Ag/AgCl electrode, as shown in
Figure 6b. However, the stability of two-channel G-SGFET was decreased after 1 h, as shown in
Figure S5b. The stability of the two-channel G-SGFET is lowered after 1 h, but within 1 h, the pH sensitivity is stable. Therefore, it is expected to be fully utilized as a disposable pH sensor.
To achieve high pH sensitivity, it is critical for the sensing channel of the two-channel G-SGFET to have an ideal
Nernstian response while the reference electrode remains entirely insensitive to pH. We adopted the partially oxygenated graphene electrode as a sensing channel with pH sensitivity of 19.4 mV/pH, whereas the semi-ionic C-F bonding graphene electrode was chosen as a reference electrode in the two-channel G-SGFET. When the plasma treatment time increased in the oxygen gas environment, the pH sensitivity of the two-channel G-SGFET increased as the number of binding sites of [H
+] increased on the oxygenated gate channel. However, the large degree of surface modification using plasma treatment, the resistance of the oxygenated gate channel increased and the two-channel G-SGFET unstably worked in electrolyte solution, because the surface of the graphene layer was etched by oxygen plasma [
29].