Point-of-Care Diagnostics in Coagulation Management
Abstract
:1. Introduction
2. Standard Laboratory Coagulation Tests
3. Viscoelastic Tests
3.1. Rotational Thrombelastometry-ROTEM®
3.2. Visual Clot
3.3. Thrombelastography—TEG®
3.4. Early Viscoelastic Variables to Predict Transfusion and Mortality
3.5. ClotPro®
3.6. Sonoclot®
4. Point-of-Care Guided Therapy
4.1. Viscoelastic Parameters for POC Guided Therapy
4.2. Viscoelastic Parameters for Anticoagulated Patients
4.3. Algorithm-Guided POC Therapy
5. Platelet Function Tests
5.1. Tests Based on Whole Blood Aggregometry
5.2. Tests Based on Platelet Adhesion under Shear Stress
5.3. Tests Based on Optical Detection
6. Point-of-Care Coagulometry
7. Blood Gas Analysis
8. Conclusions
9. Patents
Author Contributions
Funding
Conflicts of Interest
References
- Spahn, D.R.; Bouillon, B.; Cerny, V.; Duranteau, J.; Filipescu, D.; Hunt, B.J.; Komadina, R.; Maegele, M.; Nardi, G.; Riddez, L.; et al. The european guideline on management of major bleeding and coagulopathy following trauma: Fifth edition. Crit. Care 2019, 23, 98. [Google Scholar] [CrossRef] [Green Version]
- Stein, P.; Kaserer, A.; Sprengel, K.; Wanner, G.A.; Seifert, B.; Theusinger, O.M.; Spahn, D.R. Change of transfusion and treatment paradigm in major trauma patients. Anaesthesia 2017, 72, 1317–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, P.; Kaserer, A.; Spahn, G.H.; Spahn, D.R. Point-of-care coagulation monitoring in trauma patients. Semin. Thromb. Hemost. 2017, 43, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Theusinger, O.M.; Wanner, G.A.; Emmert, M.Y.; Billeter, A.; Eismon, J.; Seifert, B.; Simmen, H.P.; Spahn, D.R.; Baulig, W. Hyperfibrinolysis diagnosed by rotational thromboelastometry (rotem) is associated with higher mortality in patients with severe trauma. Anesth. Analg. 2011, 113, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, E.; Moore, E.E.; Moore, H.B.; Chapman, M.P.; Chin, T.L.; Ghasabyan, A.; Wohlauer, M.V.; Barnett, C.C.; Bensard, D.D.; Biffl, W.L.; et al. Goal-directed hemostatic resuscitation of trauma-induced coagulopathy: A pragmatic randomized clinical trial comparing a viscoelastic assay to conventional coagulation assays. Ann. Surg. 2016, 263, 1051–1059. [Google Scholar] [CrossRef]
- Görlinger, K.; Dirkmann, D.; Hanke, A.A.; Kamler, M.; Kottenberg, E.; Thielmann, M.; Jakob, H.; Peters, J. First-line therapy with coagulation factor concentrates combined with point-of-care coagulation testing is associated with decreased allogeneic blood transfusion in cardiovascular surgery: A retrospective, single-center cohort study. Anesthesiology 2011, 115, 1179–1191. [Google Scholar] [CrossRef] [Green Version]
- Weber, C.F.; Görlinger, K.; Meininger, D.; Herrmann, E.; Bingold, T.; Moritz, A.; Cohn, L.H.; Zacharowski, K. Point-of-care testing: A prospective, randomized clinical trial of efficacy in coagulopathic cardiac surgery patients. Anesthesiology 2012, 117, 531–547. [Google Scholar] [CrossRef] [Green Version]
- Mallaiah, S.; Chevannes, C.; McNamara, H.; Barclay, P. A reply. Anaesthesia 2015, 70, 760–761. [Google Scholar] [CrossRef] [Green Version]
- Mallaiah, S.; Barclay, P.; Harrod, I.; Chevannes, C.; Bhalla, A. Introduction of an algorithm for rotem-guided fibrinogen concentrate administration in major obstetric haemorrhage. Anaesthesia 2015, 70, 166–175. [Google Scholar] [CrossRef]
- Haas, T.; Fries, D.; Tanaka, K.A.; Asmis, L.; Curry, N.S.; Schöchl, H. Usefulness of standard plasma coagulation tests in the management of perioperative coagulopathic bleeding: Is there any evidence. Br. J. Anaesth. 2015, 114, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Da Luz, L.T.; Nascimento, B.; Shankarakutty, A.K.; Rizoli, S.; Adhikari, N.K. Effect of thromboelastography (teg®) and rotational thromboelastometry (rotem®) on diagnosis of coagulopathy, transfusion guidance and mortality in trauma: Descriptive systematic review. Crit. Care 2014, 18, 518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duke, W.W. The relation of blood platelets to hemorrhagic disease: Description of a method for determining the bleeding time and coagulation time and report of three cases of hemorrhagic disease relieved by transfusion. J. Am. Med Assoc. 1910, 55, 1185–1192. [Google Scholar] [CrossRef]
- Davie, E.W.; Fujikawa, K.; Kisiel, W. The coagulation cascade: Initiation, maintenance, and regulation. Biochemistry 1991, 30, 10363–10370. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.; Monroe, D.M., 3rd. A cell-based model of hemostasis. Thromb. Haemost. 2001, 85, 958–965. [Google Scholar]
- Quick, A.J. The thromboplastin reagent for the determination of prothrombin. Science 1940, 92, 113–114. [Google Scholar] [CrossRef]
- Langdell, R.D.; Wagner, R.H.; Brinkhous, K.M. Effect of antihemophilic factor on one-stage clotting tests; a presumptive test for hemophilia and a simple one-stage antihemophilic factor assy procedure. J. Lab. Clin. Med. 1953, 41, 637–647. [Google Scholar]
- Tripodi, A.; Mannucci, P.M. Activated partial thromboplastin time (aptt). New indications for an old test. J. Thromb. Haemost. JTH 2006, 4, 750–751. [Google Scholar] [CrossRef]
- Clauss, A. Rapid physiological coagulation method in determination of fibrinogen. Acta Haematol. 1957, 17, 237–246. [Google Scholar] [CrossRef]
- Kind, S.L.; Spahn-Nett, G.H.; Emmert, M.Y.; Eismon, J.; Seifert, B.; Spahn, D.R.; Theusinger, O.M. Is dilutional coagulopathy induced by different colloids reversible by replacement of fibrinogen and factor xiii concentrates. Anesth. Analg. 2013, 117, 1063–1071. [Google Scholar] [CrossRef]
- Hartert, H. Blutgerinnungsstudien mit der thrombelastographie, einem neuen untersuchungsverfahren. Klin. Wochenschr. 1948, 26, 577–583. [Google Scholar] [CrossRef]
- Theusinger, O.M.; Baulig, W.; Seifert, B.; Müller, S.M.; Mariotti, S.; Spahn, D.R. Changes in coagulation in standard laboratory tests and rotem in trauma patients between on-scene and arrival in the emergency department. Anesth. Analg. 2015, 120, 627–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luddington, R.J. Thrombelastography/thromboelastometry. Clin. Lab. Haematol. 2005, 27, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Aghighi, S.; Riddell, A.; Lee, C.A.; Brown, S.A.; Tuddenham, E.; Chowdary, P. Global coagulation assays in hemophilia a: A comparison to conventional assays. Res. Pract. Thromb. Haemost. 2020, 4, 298–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, O.H.; Fenger-Eriksen, C.; Christiansen, K.; Ingerslev, J.; Sørensen, B. Diagnostic performance and therapeutic consequence of thromboelastometry activated by kaolin versus a panel of specific reagents. Anesthesiology 2011, 115, 294–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Görlinger, K.; Dirkmann, D.; Solomon, C.; Hanke, A.A. Fast interpretation of thromboelastometry in non-cardiac surgery: Reliability in patients with hypo-, normo-, and hypercoagulability. Br. J. Anaesth. 2013, 110, 222–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olde Engberink, R.H.; Kuiper, G.J.; Wetzels, R.J.; Nelemans, P.J.; Lance, M.D.; Beckers, E.A.; Henskens, Y.M. Rapid and correct prediction of thrombocytopenia and hypofibrinogenemia with rotational thromboelastometry in cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2014, 28, 210–216. [Google Scholar] [CrossRef] [Green Version]
- Gronchi, F.; Perret, A.; Ferrari, E.; Marcucci, C.M.; Flèche, J.; Crosset, M.; Schoettker, P.; Marcucci, C. Validation of rotational thromboelastometry during cardiopulmonary bypass: A prospective, observational in-vivo study. Eur. J. Anaesthesiol. 2014, 31, 68–75. [Google Scholar] [CrossRef]
- Beiderlinden, M.; Werner, P.; Bahlmann, A.; Kemper, J.; Brezina, T.; Schäfer, M.; Görlinger, K.; Seidel, H.; Kienbaum, P.; Treschan, T.A. Monitoring of argatroban and lepirudin anticoagulation in critically ill patients by conventional laboratory parameters and rotational thromboelastometry—a prospectively controlled randomized double-blind clinical trial. BMC Anesthesiol. 2018, 18, 18. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.C.; Meijers, J.C.; Vroom, M.B.; Juffermans, N.P. Utility of thromboelastography and/or thromboelastometry in adults with sepsis: A systematic review. Crit. Care 2014, 18, 30. [Google Scholar] [CrossRef] [Green Version]
- Lang, T.; Bauters, A.; Braun, S.L.; Pötzsch, B.; von Pape, K.W.; Kolde, H.J.; Lakner, M. Multi-centre investigation on reference ranges for rotem thromboelastometry. Blood Coagul. Fibrinolysis An Int. J. Haemost. Thromb. 2005, 16, 301–310. [Google Scholar] [CrossRef]
- Kelly, J.M.; Rizoli, S.; Veigas, P.; Hollands, S.; Min, A. Using rotational thromboelastometry clot firmness at 5 minutes (rotem®) extem a5) to predict massive transfusion and in-hospital mortality in trauma: A retrospective analysis of 1146 patients. Anaesthesia 2018, 73, 1103–1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veigas, P.V.; Callum, J.; Rizoli, S.; Nascimento, B.; da Luz, L.T. A systematic review on the rotational thrombelastometry (rotem®) values for the diagnosis of coagulopathy, prediction and guidance of blood transfusion and prediction of mortality in trauma patients. Scand. J. Trauma Resusc. Emerg. Med. 2016, 24, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rössler, J.; Meybohm, P.; Spahn, D.R.; Zacharowski, K.; Braun, J.; Nöthiger, C.B.; Tscholl, D.W. Improving decision making through presentation of viscoelastic tests as a 3d animated blood clot: The visual clot. Anaesthesia 2020. [Google Scholar] [CrossRef]
- Roche, T.R.; Said, S.; Rössler, J.; Godzik, M.; Meybohm, P.; Zacharowski, K.; Spahn, D.R.; Nöthiger, C.B.; Tscholl, D.W. Physician perceptions of visual clot—a situation awareness-oriented visualization technology for viscoelastic tests: A mixed methods study. JMIR Prepr. 2020, 19036. [Google Scholar] [CrossRef]
- Tscholl, D.W.; Rössler, J.; Said, S.; Kaserer, A.; Spahn, D.R.; Nöthiger, C.B. Situation awareness-oriented patient monitoring with visual patient technology: A qualitative review of the primary research. Sensors 2020, 20, 2112. [Google Scholar] [CrossRef] [Green Version]
- Gurbel, P.A.; Bliden, K.P.; Tantry, U.S.; Monroe, A.L.; Muresan, A.A.; Brunner, N.E.; Lopez-Espina, C.G.; Delmenico, P.R.; Cohen, E.; Raviv, G.; et al. First report of the point-of-care teg: A technical validation study of the teg-6s system. Platelets 2016, 27, 642–649. [Google Scholar] [CrossRef]
- Whiting, D.; DiNardo, J.A. Teg and rotem: Technology and clinical applications. Am. J. Hematol. 2014, 89, 228–232. [Google Scholar] [CrossRef]
- Ziegler, B.; Voelckel, W.; Zipperle, J.; Grottke, O.; Schöchl, H. Comparison between the new fully automated viscoelastic coagulation analysers teg 6s and rotem sigma in trauma patients: A prospective observational study. Eur. J. Anaesthesiol. 2019, 36, 834–842. [Google Scholar] [CrossRef]
- Kauvar, D.S.; Lefering, R.; Wade, C.E. Impact of hemorrhage on trauma outcome: An overview of epidemiology, clinical presentations, and therapeutic considerations. J. Trauma 2006, 60, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Holcomb, J.B.; del Junco, D.J.; Fox, E.E.; Wade, C.E.; Cohen, M.J.; Schreiber, M.A.; Alarcon, L.H.; Bai, Y.; Brasel, K.J.; Bulger, E.M.; et al. The prospective, observational, multicenter, major trauma transfusion (prommtt) study: Comparative effectiveness of a time-varying treatment with competing risks. JAMA Surg. 2013, 148, 127–136. [Google Scholar] [CrossRef]
- Hagemo, J.S.; Christiaans, S.C.; Stanworth, S.J.; Brohi, K.; Johansson, P.I.; Goslings, J.C.; Naess, P.A.; Gaarder, C. Detection of acute traumatic coagulopathy and massive transfusion requirements by means of rotational thromboelastometry: An international prospective validation study. Crit. Care 2015, 19, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laursen, T.H.; Meyer, M.A.S.; Meyer, A.S.P.; Gaarder, T.; Naess, P.A.; Stensballe, J.; Ostrowski, S.R.; Johansson, P.I. Thrombelastography early amplitudes in bleeding and coagulopathic trauma patients: Results from a multicenter study. J. Trauma Acute Care Surg. 2018, 84, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.S.; Meyer, M.A.; Sørensen, A.M.; Rasmussen, L.S.; Hansen, M.B.; Holcomb, J.B.; Cotton, B.A.; Wade, C.E.; Ostrowski, S.R.; Johansson, P.I. Thrombelastography and rotational thromboelastometry early amplitudes in 182 trauma patients with clinical suspicion of severe injury. J. Trauma Acute Care Surg. 2014, 76, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, J.; Murphy, M.; Dias, J.D. Viscoelastic hemostatic assays: Moving from the laboratory to the site of care-a review of established and emerging technologies. Diagnostics 2020, 10, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Kaulla, K.N.; Ostendorf, P.; von Kaulla, E. The impedance machine: A new bedside coagulation recording device. J. Med. 1975, 6, 73–88. [Google Scholar] [PubMed]
- Curry, N.S.; Davenport, R.; Pavord, S.; Mallett, S.V.; Kitchen, D.; Klein, A.A.; Maybury, H.; Collins, P.W.; Laffan, M. The use of viscoelastic haemostatic assays in the management of major bleeding: A british society for haematology guideline. Br. J. Haematol. 2018, 182, 789–806. [Google Scholar] [CrossRef] [Green Version]
- Ganter, M.T.; Hofer, C.K. Coagulation monitoring: Current techniques and clinical use of viscoelastic point-of-care coagulation devices. Anesth. Analg. 2008, 106, 1366–1375. [Google Scholar] [CrossRef] [Green Version]
- Gando, S.; Hayakawa, M. Pathophysiology of trauma-induced coagulopathy and management of critical bleeding requiring massive transfusion. Semin. Thromb. Hemost. 2016, 42, 155–165. [Google Scholar]
- Maegele, M.; Schöchl, H.; Cohen, M.J. An update on the coagulopathy of trauma. Shock 2014, 41, 21–25. [Google Scholar] [CrossRef]
- Schöchl, H.; Nienaber, U.; Hofer, G.; Voelckel, W.; Jambor, C.; Scharbert, G.; Kozek-Langenecker, S.; Solomon, C. Goal-directed coagulation management of major trauma patients using thromboelastometry (rotem)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Crit. Care 2010, 14, 55. [Google Scholar] [CrossRef] [Green Version]
- Theusinger, O.M.; Baulig, W.; Seifert, B.; Emmert, M.Y.; Spahn, D.R.; Asmis, L.M. Relative concentrations of haemostatic factors and cytokines in solvent/detergent-treated and fresh-frozen plasma. Br. J. Anaesth. 2011, 106, 505–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toy, P.; Popovsky, M.A.; Abraham, E.; Ambruso, D.R.; Holness, L.G.; Kopko, P.M.; McFarland, J.G.; Nathens, A.B.; Silliman, C.C.; Stroncek, D. Transfusion-related acute lung injury: Definition and review. Crit. Care Med. 2005, 33, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Edens, C.; Haass, K.A.; Cumming, M.; Osinski, A.; O’Hearn, L.; Passanisi, K.; Eaton, L.; Visintainer, P.; Savinkina, A.; Kuehnert, M.J.; et al. Evaluation of the national healthcare safety network hemovigilance module for transfusion-related adverse reactions in the united states. Transfusion 2019, 59, 524–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreu, G.; Morel, P.; Forestier, F.; Debeir, J.; Rebibo, D.; Janvier, G.; Hervé, P. Hemovigilance network in france: Organization and analysis of immediate transfusion incident reports from 1994 to 1998. Transfusion 2002, 42, 1356–1364. [Google Scholar] [CrossRef]
- Chow, J.H.; Richards, J.E.; Morrison, J.J.; Galvagno, S.M., Jr.; Tanaka, K.A.; Madurska, M.J.; Rock, P.; Scalea, T.M.; Mazzeffi, M.A. Viscoelastic signals for optimal resuscitation in trauma: Kaolin thrombelastography cutoffs for diagnosing hypofibrinogenemia (visor study). Anesth. Analg. 2019, 129, 1482–1491. [Google Scholar] [CrossRef]
- Theusinger, O.M.; Nürnberg, J.; Asmis, L.M.; Seifert, B.; Spahn, D.R. Rotation thromboelastometry (rotem) stability and reproducibility over time. Eur. J. Cardio Thorac. Surg. 2010, 37, 677–683. [Google Scholar] [CrossRef] [Green Version]
- Mackie, I.; Cooper, P.; Lawrie, A.; Kitchen, S.; Gray, E.; Laffan, M. Guidelines on the laboratory aspects of assays used in haemostasis and thrombosis. Int. J. Lab. Hematol. 2013, 35, 1–13. [Google Scholar] [CrossRef]
- Ranucci, M.; Baryshnikova, E. Sensitivity of viscoelastic tests to platelet function. J. Clin. Med. 2020, 9, 189. [Google Scholar] [CrossRef] [Green Version]
- Heeringa, J.; van der Kuip, D.A.; Hofman, A.; Kors, J.A.; van Herpen, G.; Stricker, B.H.; Stijnen, T.; Lip, G.Y.; Witteman, J.C. Prevalence, incidence and lifetime risk of atrial fibrillation: The rotterdam study. Eur. Heart J. 2006, 27, 949–953. [Google Scholar] [CrossRef] [Green Version]
- Bellin, A.; Berto, P.; Themistoclakis, S.; Chandak, A.; Giusti, P.; Cavalli, G.; Bakshi, S.; Tessarin, M.; Deambrosis, P.; Chinellato, A. New oral anti-coagulants versus vitamin k antagonists in high thromboembolic risk patients. PLoS ONE 2019, 14, 0222762. [Google Scholar] [CrossRef]
- Shoeb, M.; Fang, M.C. Assessing bleeding risk in patients taking anticoagulants. J. Thromb. Thrombolysis 2013, 35, 312–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salmonson, T.; Dogné, J.M.; Janssen, H.; Garcia Burgos, J.; Blake, P. Non-vitamin-k oral anticoagulants and laboratory testing: Now and in the future: Views from a workshop at the european medicines agency (ema). Eur. Heart J. Cardiovasc. Pharmacother. 2017, 3, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Seyve, L.; Richarme, C.; Polack, B.; Marlu, R. Impact of four direct oral anticoagulants on rotational thromboelastometry (rotem). Int. J. Lab. Hematol. 2018, 40, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Gosselin, R.C.; Adcock, D.; Dorgalaleh, A.; Favaloro, E.J.; Lippi, G.; Pego, J.M.; Regan, I.; Siguret, V. International council for standardization in haematology recommendations for hemostasis critical values, tests, and reporting. Semin. Thromb. Hemost. 2020, 46, 398–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adelmann, D.; Wiegele, M.; Wohlgemuth, R.K.; Koch, S.; Frantal, S.; Quehenberger, P.; Scharbert, G.; Kozek-Langenecker, S.; Schaden, E. Measuring the activity of apixaban and rivaroxaban with rotational thrombelastometry. Thromb. Res. 2014, 134, 918–923. [Google Scholar] [CrossRef]
- Fontana, P.; Alberio, L.; Angelillo-Scherrer, A.; Asmis, L.M.; Korte, W.; Mendez, A.; Schmid, P.; Stricker, H.; Studt, J.D.; Tsakiris, D.A.; et al. Impact of rivaroxaban on point-of-care assays. Thromb. Res. 2017, 153, 65–70. [Google Scholar] [CrossRef]
- Vedovati, M.C.; Mosconi, M.G.; Isidori, F.; Agnelli, G.; Becattini, C. Global thromboelastometry in patients receiving direct oral anticoagulants: The ro-doa study. J. Thromb. Thrombolysis 2020, 49, 251–258. [Google Scholar] [CrossRef]
- Dias, J.D.; Norem, K.; Doorneweerd, D.D.; Thurer, R.L.; Popovsky, M.A.; Omert, L.A. Use of thromboelastography (teg) for detection of new oral anticoagulants. Arch. Pathol. Lab. Med. 2015, 139, 665–673. [Google Scholar] [CrossRef] [Green Version]
- Bliden, K.P.; Chaudhary, R.; Mohammed, N.; Muresan, A.A.; Lopez-Espina, C.G.; Cohen, E.; Raviv, G.; Doubleday, M.; Zaman, F.; Mathew, B.; et al. Determination of non-vitamin k oral anticoagulant (noac) effects using a new-generation thrombelastography teg 6s system. J. Thromb. Thrombolysis 2017, 43, 437–445. [Google Scholar] [CrossRef]
- Nardi, G.; Agostini, V.; Rondinelli, B.; Russo, E.; Bastianini, B.; Bini, G.; Bulgarelli, S.; Cingolani, E.; Donato, A.; Gambale, G.; et al. Trauma-induced coagulopathy: Impact of the early coagulation support protocol on blood product consumption, mortality and costs. Crit. Care 2015, 19, 83. [Google Scholar] [CrossRef] [Green Version]
- Wikkelsø, A.; Wetterslev, J.; Møller, A.M.; Afshari, A. Thromboelastography (teg) or thromboelastometry (rotem) to monitor haemostatic treatment versus usual care in adults or children with bleeding. Cochrane Database Syst. Rev. 2016, 2016, 007871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deppe, A.C.; Weber, C.; Zimmermann, J.; Kuhn, E.W.; Slottosch, I.; Liakopoulos, O.J.; Choi, Y.H.; Wahlers, T. Point-of-care thromboelastography/thromboelastometry-based coagulation management in cardiac surgery: A meta-analysis of 8332 patients. J. Surg. Res. 2016, 203, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.S.; Oliveira, A.J.F.; Barbosa, M.C.L.; Nogueira, J. Viscoelastic haemostatic assays in the perioperative period of surgical procedures: Systematic review and meta-analysis. J. Clin. Anesth. 2020, 64, 109809. [Google Scholar] [CrossRef] [PubMed]
- Fahrendorff, M.; Oliveri, R.S.; Johansson, P.I. The use of viscoelastic haemostatic assays in goal-directing treatment with allogeneic blood products—a systematic review and meta-analysis. Scand. J. Trauma Resusc. Emerg. Med. 2017, 25, 39. [Google Scholar] [CrossRef] [Green Version]
- Vlot, E.A.; Rigter, S.; Noordzij, P.G. Optimal patient blood management in cardiac surgery using viscoelastic point-of-care testing: Response to: Routine use of viscoelastic blood tests for diagnosis and treatment of coagulopathic bleeding in cardiac surgery: Updated systematic review and meta-analysis. Br. J. Anaesth. 2017, 119, 544–545. [Google Scholar]
- Serraino, G.F.; Murphy, G.J. Routine use of viscoelastic blood tests for diagnosis and treatment of coagulopathic bleeding in cardiac surgery: Updated systematic review and meta-analysis. Br. J. Anaesth. 2017, 118, 823–833. [Google Scholar] [CrossRef] [Green Version]
- Lodewyks, C.; Heinrichs, J.; Grocott, H.P.; Karkouti, K.; Romund, G.; Arora, R.C.; Tangri, N.; Rabbani, R.; Abou-Setta, A.; Zarychanski, R. Point-of-care viscoelastic hemostatic testing in cardiac surgery patients: A systematic review and meta-analysis. Can. J. Anaesth. 2018, 65, 1333–1347. [Google Scholar] [CrossRef] [Green Version]
- Ranucci, M. Bank blood shortage, transfusion containment and viscoelastic point-of-care coagulation testing in cardiac surgery. Br. J. Anaesth. 2017, 118, 814–815. [Google Scholar] [CrossRef] [Green Version]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. JTH 2020, 18, 844–847. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with covid-19 in wuhan, china: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Baron, D.M.; Franchini, M.; Goobie, S.M.; Javidroozi, M.; Klein, A.A.; Lasocki, S.; Liumbruno, G.M.; Muñoz, M.; Shander, A.; Spahn, D.R.; et al. Patient blood management during the covid-19 pandemic—a narrative review. Anaesthesia 2020. [Google Scholar] [CrossRef]
- Born, G.V. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962, 194, 927–929. [Google Scholar] [CrossRef]
- Winter, M.P.; Grove, E.L.; De Caterina, R.; Gorog, D.A.; Ahrens, I.; Geisler, T.; Gurbel, P.A.; Tantry, U.; Navarese, E.P.; Siller-Matula, J.M. Advocating cardiovascular precision medicine with p2y12 receptor inhibitors. Eur. Heart J. Cardiovasc. Pharmacother. 2017, 3, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Wang, Y.; Wu, Y.; Huang, C.; Yan, H.; Zhu, W.; Xu, W.; Zhang, L.; Zhu, J. Individualized dual antiplatelet therapy based on platelet function testing in patients undergoing percutaneous coronary intervention: A meta-analysis of randomized controlled trials. BMC Cardiovasc. Disord. 2017, 17, 157. [Google Scholar] [CrossRef] [Green Version]
- Petricevic, M.; Kopjar, T.; Biocina, B.; Milicic, D.; Kolic, K.; Boban, M.; Skoric, B.; Lekic, A.; Gasparovic, H. The predictive value of platelet function point-of-care tests for postoperative blood loss and transfusion in routine cardiac surgery: A systematic review. Thorac. Cardiovasc. Surg. 2015, 63, 2–20. [Google Scholar]
- Petricevic, M.; Konosic, S.; Biocina, B.; Dirkmann, D.; White, A.; Mihaljevic, M.Z.; Ivancan, V.; Konosic, L.; Svetina, L.; Görlinger, K. Bleeding risk assessment in patients undergoing elective cardiac surgery using rotem(®) platelet and multiplate(®) impedance aggregometry. Anaesthesia 2016, 71, 636–647. [Google Scholar] [CrossRef]
- Connelly, C.R.; Yonge, J.D.; McCully, S.P.; Hart, K.D.; Hilliard, T.C.; Lape, D.E.; Watson, J.J.; Rick, B.; Houser, B.; Deloughery, T.G.; et al. Assessment of three point-of-care platelet function assays in adult trauma patients. J. Surg. Res. 2017, 212, 260–269. [Google Scholar] [CrossRef]
- Moenen, F.; Vries, M.J.A.; Nelemans, P.J.; van Rooy, K.J.M.; Vranken, J.; Verhezen, P.W.M.; Wetzels, R.J.H.; Ten Cate, H.; Schouten, H.C.; Beckers, E.A.M.; et al. Screening for platelet function disorders with multiplate and platelet function analyzer. Platelets 2019, 30, 81–87. [Google Scholar] [CrossRef]
- Cardinal, D.C.; Flower, R.J. The electronic aggregometer: A novel device for assessing platelet behavior in blood. J. Pharmacol. Methods 1980, 3, 135–158. [Google Scholar] [CrossRef]
- Tóth, O.; Calatzis, A.; Penz, S.; Losonczy, H.; Siess, W. Multiple electrode aggregometry: A new device to measure platelet aggregation in whole blood. Thromb. Haemost. 2006, 96, 781–788. [Google Scholar]
- Peerschke, E.I.; Castellone, D.D.; Stroobants, A.K.; Francis, J. Reference range determination for whole-blood platelet aggregation using the multiplate analyzer. Am. J. Clin. Pathol. 2014, 142, 647–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Würtz, M.; Hvas, A.M.; Christensen, K.H.; Rubak, P.; Kristensen, S.D.; Grove, E.L. Rapid evaluation of platelet function using the multiplate® analyzer. Platelets 2014, 25, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Krüger, J.C.; Meves, S.H.; Kara, K.; Mügge, A.; Neubauer, H. Monitoring asa and p2y12-specific platelet inhibition--comparison of conventional (single) and multiple electrode aggregometry. Scand. J. Clin. Lab. Investig. 2014, 74, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Paniccia, R.; Priora, R.; Liotta, A.A.; Abbate, R. Platelet function tests: A comparative review. Vasc. Health Risk Manag. 2015, 11, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Kratzer, M.A.; Negrescu, E.V.; Hirai, A.; Yeo, Y.K.; Franke, P.; Siess, W. The thrombostat system. A useful method to test antiplatelet drugs and diets. Semin. Thromb. Hemost. 1995, 21, 25–31. [Google Scholar] [CrossRef]
- Harrison, P.; Mackie, I.; Mumford, A.; Briggs, C.; Liesner, R.; Winter, M.; Machin, S. Guidelines for the laboratory investigation of heritable disorders of platelet function. Br. J. Haematol. 2011, 155, 30–44. [Google Scholar] [CrossRef]
- Smith, J.W.; Steinhubl, S.R.; Lincoff, A.M.; Coleman, J.C.; Lee, T.T.; Hillman, R.S.; Coller, B.S. Rapid platelet-function assay: An automated and quantitative cartridge-based method. Circulation 1999, 99, 620–625. [Google Scholar] [CrossRef] [Green Version]
- Jeong, Y.H.; Bliden, K.P.; Antonino, M.J.; Park, K.S.; Tantry, U.S.; Gurbel, P.A. Usefulness of the verifynow p2y12 assay to evaluate the antiplatelet effects of ticagrelor and clopidogrel therapies. Am. Heart J. 2012, 164, 35–42. [Google Scholar] [CrossRef]
- Plesch, W.; van den Besselaar, A.M. Validation of the international normalized ratio (inr) in a new point-of-care system designed for home monitoring of oral anticoagulation therapy. Int. J. Lab. Hematol. 2009, 31, 20–25. [Google Scholar] [CrossRef]
- Ebner, M.; Birschmann, I.; Peter, A.; Härtig, F.; Spencer, C.; Kuhn, J.; Blumenstock, G.; Zuern, C.S.; Ziemann, U.; Poli, S. Emergency coagulation assessment during treatment with direct oral anticoagulants: Limitations and solutions. Stroke 2017, 48, 2457–2463. [Google Scholar] [CrossRef]
- Drouet, L.; Bal Dit Sollier, C.; Steiner, T.; Purrucker, J. Measuring non-vitamin k antagonist oral anticoagulant levels: When is it appropriate and which methods should be used. Int. J. Stroke 2016, 11, 748–758. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, L.; Pesenti, A.; Matthay, M. Understanding blood gas analysis. Intensive Care Med. 2018, 44, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Massie, L.; Murata, G.H.; Tzamaloukas, A.H. Discrepancy between measured serum total carbon dioxide content and bicarbonate concentration calculated from arterial blood gases. Cureus 2015, 7, 398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pospíšilová, M.; Kuncová, G.; Trögl, J. Fiber-optic chemical sensors and fiber-optic bio-sensors. Sensors 2015, 15, 25208–25259. [Google Scholar] [CrossRef] [PubMed]
- Schober, P.; Bossers, S.M.; Krage, R.; De Leeuw, M.A.; Schwarte, L.A. Portable blood (gas) analyzer in a helicopter emergency medical service. Air Med. J. 2019, 38, 302–304. [Google Scholar] [CrossRef]
EXTEM |
|
INTEM |
|
FIBTEM |
|
APTEM |
|
HEPTEM |
|
RapidTEG™ |
|
Kaolin |
|
Functional Fibrinogen |
|
Native |
|
HTEG |
|
ROTEM® | TEG® | Unit | Explanation | Significance |
---|---|---|---|---|
Clot Activation Parameters | ||||
Clotting Time (CT) | Reaction Time (R) | s | Time from test start to an amplitude of 2 mm | Velocity of thrombin generation |
Clot Formation Time (CFT) | Kinetic Time (K) | s | Time between 2 and 20 mm clot amplitude | Kinetics of clot formation |
Alpha-angle (α) | Alpha-angle (α) | degree (°) | Tangential angle at 2 mm amplitude (ROTEM®) or slope between R and K (TEG®) | Velocity of clot formation |
Clot Firmness Parameters | ||||
Amplitude at 5, 10 m (A5, 10) | Amplitude at 30, 60 m (A30, 60) | mm | Amplitude at set time | Clot strength |
Maximum Clot Firmness (MCF) | Maximum Amplitude (MA) | mm | Greatest width achieved | Maximal cloth strength |
Clot Lysis Parameters | ||||
Lysis Index at 30, 60 m (LI30, 60) | Clot Lysis at 30, 60 m (CL30, 60) | % | Residual clot firmness at set time, as % of MCF | Clot stability and fibrinolysis |
Maximum Lysis (ML) | unestablished | % | Maximum lysis detected during the run time, as % of MCF | Maximal clot stability and fibrinolysis |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahli, S.D.; Rössler, J.; Tscholl, D.W.; Studt, J.-D.; Spahn, D.R.; Kaserer, A. Point-of-Care Diagnostics in Coagulation Management. Sensors 2020, 20, 4254. https://doi.org/10.3390/s20154254
Sahli SD, Rössler J, Tscholl DW, Studt J-D, Spahn DR, Kaserer A. Point-of-Care Diagnostics in Coagulation Management. Sensors. 2020; 20(15):4254. https://doi.org/10.3390/s20154254
Chicago/Turabian StyleSahli, Sebastian D., Julian Rössler, David W. Tscholl, Jan-Dirk Studt, Donat R. Spahn, and Alexander Kaserer. 2020. "Point-of-Care Diagnostics in Coagulation Management" Sensors 20, no. 15: 4254. https://doi.org/10.3390/s20154254
APA StyleSahli, S. D., Rössler, J., Tscholl, D. W., Studt, J. -D., Spahn, D. R., & Kaserer, A. (2020). Point-of-Care Diagnostics in Coagulation Management. Sensors, 20(15), 4254. https://doi.org/10.3390/s20154254