A Waveform Image Method for Discriminating Micro-Seismic Events and Blasts in Underground Mines
Abstract
:1. Introduction
2. Materials and Methods
- Establishment of waveform image databases: The full waveform data recorded from 2013 to 2015 by a micro-seismic monitoring system installed in the Yongshaba underground mine is used to produce the waveform images. Then, the waveform image databases of micro-seismic events and blasts are established, where micro-seismic events and blasts are labeled as E and B, respectively.
- Principal component analysis: PCA is applied to extract the original image features from the two databases and transform them into the new uncorrelated features with quantitative importance and lower dimension, where the amount of initial information retained in the derived features is determined by the contribution rate. Thus, PCA can reduce the number of input features and improve the classification efficiency.
- Establishment of discrimination models: SVM algorithm is selected to establish discrimination models for micro-seismic events and blasts in underground mines by utilizing the PCA derived waveform image features. Then, the discrimination models are used to classify for test sets.
- Application of the discrimination results: The micro-seismic data is applied to locate micro-seismic events, to analyze the local state of stress of rock, and to assess potential hazards in underground mining area.
2.1. Establishment of Waveform Image Databases
2.2. Principal Component Analysis
2.3. Classification Algorithm
2.4. Evaluation of Classification Quality
3. Experimental Study and Results
3.1. Data Description and Preparation
3.2. PCA Application and Analysis
3.3. Classification Results
4. Discussion
4.1. Contribution Rate
4.2. Computation Efficiency
4.3. Further Applications
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Potvin, Y.; Hudyma, M.R. Seismic monitoring in highly mechanized hardrock mines in Canada and Australia. In Proceedings of the Fifth International Symposium of Rockburst and Seismicity in Mines, Johannesburg, South Africa, 1 January 2001; pp. 267–280. [Google Scholar]
- Zhang, P.H.; Yang, T.H.; Yu, Q.L.; Xu, T.; Shi, W.H.; Li, S.C. Study of a seepage channel formation using the combination of microseismic monitoring technique and numerical method in Zhangmatun iron mine. Rock Mech. Rock Eng. 2016, 49, 3699–3708. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, T.H.; Zhang, P.H.; Zhou, J.R.; Yu, Q.L.; Deng, W.X. The analysis of rock damage process based on the microseismic monitoring and numerical simulations. Tunn. Undergr. Space Technol. 2017, 69, 1–17. [Google Scholar] [CrossRef]
- Lu, C.P.; Dou, L.M.; Zhang, N.; Xue, J.H.; Wang, X.N.; Liu, H.; Zhang, J.W. Microseismic frequency-spectrum evolutionary rule of rockburst triggered by roof fall. Int. J. Rock Mech. Min. Sci. 2013, 64, 6–16. [Google Scholar] [CrossRef]
- Feng, G.L.; Feng, X.T.; Chen, B.R.; Xiao, Y.X.; Yu, Y. A microseismic method for dynamic warning of rockburst development processes in tunnels. Rock Mech. Rock Eng. 2015, 48, 2061–2076. [Google Scholar] [CrossRef]
- He, H.; Dou, L.M.; Cao, A.Y.; Fan, J. Mechanisms of mining seismicity under large scale exploitation with multikey strata. Shock Vib. 2015, 2015, 313069. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.J.; Shu, W.W.; Li, X.B.; Han, G.J.; Zou, W. Three dimensional comprehensive analytical solutions for locating sources of sensor networks in unknown velocity mining system. IEEE Access 2017, 5, 11337–11351. [Google Scholar] [CrossRef]
- Dong, L.J.; Li, X.B.; Tang, L.Z.; Gong, F.Q. Mathematical functions and parameters for microseismic source location without pre-measuring speed. Chin. J. Rock Mech. Eng. 2011, 30, 2057–2067. [Google Scholar]
- Dong, L.J.; Li, X.B. Three-dimensional analytical solution of acoustic emission or microseismic source location under cube monitoring network. Trans. Nonferrous Met. Soc. China 2012, 22, 3087–3094. [Google Scholar] [CrossRef]
- Dong, L.J.; Li, X.B.; Zhou, Z.L.; Chen, G.H.; Ma, J. Three-dimensional analytical solution of acoustic emission source location for cuboid monitoring network without premeasured wave velocity. Trans. Nonferrous Met. Soc. China 2015, 25, 293–302. [Google Scholar] [CrossRef]
- Dong, L.J.; Shu, W.W.; Han, G.J.; Li, X.B.; Wang, J. A multi-step source localization method with narrowing velocity interval of cyber-physical systems in buildings. IEEE Access 2017, 5, 20207–20219. [Google Scholar] [CrossRef]
- Li, X.B.; Dong, L.J. An efficient closed-form solution for acoustic emission source location in three-dimensional structures. AIP Adv. 2014, 4, 027110. [Google Scholar] [CrossRef]
- Dong, L.J.; Wesseloo, J.; Potvin, Y.; Li, X.B. Discriminant models of blasts and seismic events in mine seismology. Int. J. Rock Mech. Min. Sci. 2016, 86, 282–291. [Google Scholar] [CrossRef]
- Derr, J.S. Discrimination of earthquakes and explosions by the Rayleigh-wave spectral ratio. Bull. Seismol. Soc. Am. 1970, 60, 1653–1668. [Google Scholar]
- Hedlin, M.A.H.; Minster, J.B.; Orcutt, J.A. An automatic means to discriminate between earthquakes and quarry blasts. Bull. Seismol. Soc. Am. 1990, 80, 2143–2160. [Google Scholar]
- Tsvang, S.L.; Pinsky, V.I.; Husebye, E.S. Enhanced seismic source discrimination using NORESS recordings from Eurasian events. Geophys J. Int. 1993, 112, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.G.; Park, Y.C.; Kim, W.Y. Discrimination of small earthquakes and artificial explosions in the Korean Peninsula using Pg/Lg ratios. Geophys J. Int. 1998, 134, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Bowers, D.; Douglas, A.; Selby, N.D.; Marshall, P.D.; Wallis, N.L. Seismological identification of the 1998 May 28 Pakistan nuclear test. Geophys J. Int. 2002, 150, 153–161. [Google Scholar] [CrossRef]
- Arrowsmith, S.J.; Arrowsmith, M.D.; Hedlin, M.A.H.; Stump, B. Discrimination of delay-fired mine blasts in Wyoming using an automatic time-frequency discriminant. Bull. Seismol. Soc. Am. 2006, 96, 2368–2382. [Google Scholar] [CrossRef]
- Ford, S.R.; Walter, W.R. Aftershock characteristics as a means of discriminating explosions from earthquakes. Bull. Seismol. Soc. Am. 2010, 100, 364–376. [Google Scholar] [CrossRef]
- Shin, J.S.; Sheen, D.H.; Kim, G. Regional observations of the second North Korean nuclear test on 2009 May 25. Geophys J. Int. 2010, 180, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.R. Analysis of high-frequency Pg/Lg ratios from NTS explosions and western US earthquakes. Bull. Seismol. Soc. Am. 1996, 86, 1042–1053. [Google Scholar]
- Dong, L.J.; Li, X.B.; Xie, G.N. Nonlinear methodologies for identifying seismic event and nuclear explosion using random forest, support vector machine, and naïve Bayes classification. Abstract Appl. Anal. 2014, 2014, 459137. [Google Scholar] [CrossRef] [Green Version]
- Wüster, J. Discrimination of chemical explosions and earthquakes in central Europe-a case study. Bull. Seismol. Soc. Am. 1993, 83, 1184–1212. [Google Scholar]
- Pinsky, V.I.; Shapira, A. Kinematic multistation discriminator between local quarry blasts and earthquakes. Geophys J. Int. 1998, 135, 975–987. [Google Scholar] [CrossRef] [Green Version]
- Del Pezzo, E.; Esposito, A.; Giudicepietro, F.; Marinaro, M.; Martini, M.; Scarpetta, S. Discrimination of earthquakes and underwater explosions using neural networks. Bull. Seismol. Soc. Am. 2003, 93, 215–223. [Google Scholar] [CrossRef]
- Scarpetta, S.; Giudicepietro, F.; Ezin, E.C.; Petrosino, S.; Del Pezzo, E.; Martini, M.; Marinaro, M. Automatic classification of seismic signals at Mt. Vesuvius volcano, Italy, using neural networks. Bull. Seismol. Soc. Am. 2005, 95, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Yıldırım, E.; Gülbağ, A.; Horasan, G.; Doğan, E. Discrimination of quarry blasts and earthquakes in the vicinity of Istanbul using soft computing techniques. Comput. Geosci. 2011, 37, 1209–1217. [Google Scholar] [CrossRef]
- Shang, X.Y.; Li, X.B.; Morales-Esteban, A.; Chen, G.H. Improving microseismic event and quarry blast classification using Artificial Neural Networks based on Principal Component Analysis. Soil Dyn. Earthq. Eng. 2017, 99, 142–149. [Google Scholar] [CrossRef]
- Allamehzadeh, M.; Mokhtari, M. Prediction of aftershocks distribution using self-organizing feature maps (SOFM) and its application on the Birjand-Ghaen and Izmit earthquakes. J. Seismol. Earthq. Eng. 2003, 5, 1–15. [Google Scholar]
- Kuyuk, H.S.; Yildirim, E.; Dogan, E.; Horasan, G. An unsupervised learning algorithm: Application to the discrimination of seismic events and quarry blasts in the vicinity of Istanbul. Nat. Hazards Earth Syst. Sci. 2011, 11, 93–100. [Google Scholar] [CrossRef]
- Rabin, N.; Bregman, Y.; Lindenbaum, O.; Benhorin, Y.; Averbuch, A. Earthquake-explosion discrimination using diffusion maps. Geophys J. Int. 2016, 207, 1484–1492. [Google Scholar] [CrossRef] [Green Version]
- Malovichko, D. Discrimination of blasts in mine seismology. In Proceedings of the Sixth International Seminar on Deep and High Stress Mining, Perth, Australia, 28–30 March 2012; pp. 161–172. [Google Scholar]
- Vallejos, J.A.; McKinnon, S.D. Logistic regression and neural network classification of seismic records. Int. J. Rock Mech. Min. Sci. 2013, 62, 86–95. [Google Scholar] [CrossRef]
- Dong, L.J.; Wesseloo, J.; Potvin, Y.; Li, X.B. Discrimination of mine seismic events and blasts using the Fisher classifier, Naive Bayesian classifier and logistic regression. Rock Mech. Rock Eng. 2016, 49, 183–211. [Google Scholar] [CrossRef]
- Zhao, G.Y.; Ma, J.; Dong, L.J.; Chen, G.H.; Zhang, C.X. Classification of mine blasts and microseismic events using starting-up features in seismograms. Trans. Nonferrous Met. Soc. China 2015, 25, 3410–3420. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, G.Y.; Dong, L.J.; Chen, G.H.; Zhang, C.X. A comparison of mine seismic discriminators based on features of source parameters to waveform characteristics. Shock Vib. 2015, 2015, 919143. [Google Scholar] [CrossRef] [Green Version]
- Jolliffe, I.T. Principal components in regression analysis. In Principal Component Analysis; Springer: New York, NY, USA, 1986; Chapter 8; pp. 129–155. [Google Scholar]
- Swets, D.L.; Weng, J.J. Using discriminant eigenfeatures for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 1996, 18, 831–836. [Google Scholar] [CrossRef] [Green Version]
- Abdi, H.; Williams, L.J. Principal component analysis. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Fan, R.E.; Chen, P.H.; Lin, C.J. Working set selection using the second order information for training support vector machines. J. Mach. Learn. Res. 2005, 6, 1889–1918. [Google Scholar]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–22. [Google Scholar] [CrossRef]
- Matthews, B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta (BBA) Protein Struct. 1975, 405, 442–451. [Google Scholar] [CrossRef]
- Wang, Z.W.; Li, X.B.; Zhao, D.P.; Shang, X.Y.; Dong, L.J. Time-lapse seismic tomography of an underground mining zone. Int. J. Rock Mech. Min. Sci. 2018, 107, 136–149. [Google Scholar] [CrossRef]
Test | Training Sets | Test Sets |
---|---|---|
1 | E1, B1 | E2, B2 |
2 | E2, B1 | E1, B2 |
3 | E1, B2 | E2, B1 |
4 | E2, B2 | E1, B1 |
Item | Principle Components | Dorig | Dredu | ||||||
---|---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC5 | … | PCDredu | |||
Test 1 | |||||||||
Eigenvalues ×105 | 5.04 | 3.66 | 1.70 | 1.58 | 0.81 | … | 0.0061 | 2000 | 1157 |
Importance % | 9.20 | 6.68 | 3.10 | 2.89 | 1.48 | … | 0.01 | ||
Cumulative % | 9.20 | 15.88 | 18.98 | 21.87 | 23.35 | … | 95.00 | ||
Test 2 | |||||||||
Eigenvalues ×105 | 5.29 | 3.55 | 1.66 | 1.61 | 0.81 | … | 0.0061 | 2000 | 1166 |
Importance % | 9.67 | 6.49 | 3.03 | 2.94 | 1.47 | … | 0.01 | ||
Cumulative % | 9.67 | 16.16 | 19.19 | 22.13 | 23.60 | … | 95.01 | ||
Test 3 | |||||||||
Eigenvalues ×105 | 4.36 | 3.61 | 1.67 | 1.45 | 0.77 | … | 0.0064 | 2000 | 1195 |
Importance % | 7.73 | 6.39 | 2.97 | 2.57 | 1.37 | … | 0.01 | ||
Cumulative % | 7.73 | 14.12 | 17.09 | 19.66 | 21.03 | … | 95.00 | ||
Test 4 | |||||||||
Eigenvalues ×105 | 4.58 | 3.50 | 1.64 | 1.49 | 0.78 | … | 0.0064 | 2000 | 1205 |
Importance % | 8.11 | 6.20 | 2.90 | 2.65 | 1.37 | … | 0.01 | ||
Cumulative % | 8.11 | 14.31 | 17.21 | 19.86 | 21.23 | … | 95.01 |
Test | TE | TB | FE | FB | Total Accuracy (%) | MCC |
---|---|---|---|---|---|---|
1 | 950 | 922 | 78 | 50 | 93.60% | 0.8723 |
2 | 923 | 938 | 62 | 77 | 93.05% | 0.8600 |
3 | 971 | 899 | 101 | 29 | 93.50% | 0.8722 |
4 | 947 | 890 | 110 | 53 | 91.85% | 0.8384 |
Contribution Rate σ | Test 1 | Test 2 | Test 3 | Test 4 | Average |
---|---|---|---|---|---|
0.90 | 290.17 | 287.48 | 294.91 | 294.48 | 291.76 |
0.91 | 299.42 | 297.75 | 295.43 | 300.33 | 298.23 |
0.92 | 302.82 | 302.14 | 306.21 | 315.84 | 306.75 |
0.93 | 310.47 | 315.71 | 318.39 | 331.17 | 318.94 |
0.94 | 329.24 | 327.83 | 337.40 | 347.53 | 335.50 |
0.95 | 366.65 | 356.66 | 366.74 | 366.24 | 364.07 |
1.00 | 630.75 | 634.65 | 624.06 | 620.05 | 627.38 |
Contribution Rate σ | Test 1 | Test 2 | Test 3 | Test 4 |
---|---|---|---|---|
0.90 | 312.01 | 312.48 | 312.07 | 315.12 |
0.91 | 321.61 | 324.35 | 313.95 | 323.28 |
0.92 | 323.35 | 330.93 | 325.24 | 340.16 |
0.93 | 332.94 | 343.54 | 339.43 | 355.91 |
0.94 | 352.51 | 353.27 | 357.98 | 375.30 |
0.95 | 391.72 | 383.51 | 392.24 | 398.74 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, H.; Shu, W.; Dong, L.; Huang, Z.; Sun, D. A Waveform Image Method for Discriminating Micro-Seismic Events and Blasts in Underground Mines. Sensors 2020, 20, 4322. https://doi.org/10.3390/s20154322
Wei H, Shu W, Dong L, Huang Z, Sun D. A Waveform Image Method for Discriminating Micro-Seismic Events and Blasts in Underground Mines. Sensors. 2020; 20(15):4322. https://doi.org/10.3390/s20154322
Chicago/Turabian StyleWei, Hui, Weiwei Shu, Longjun Dong, Zhongying Huang, and Daoyuan Sun. 2020. "A Waveform Image Method for Discriminating Micro-Seismic Events and Blasts in Underground Mines" Sensors 20, no. 15: 4322. https://doi.org/10.3390/s20154322
APA StyleWei, H., Shu, W., Dong, L., Huang, Z., & Sun, D. (2020). A Waveform Image Method for Discriminating Micro-Seismic Events and Blasts in Underground Mines. Sensors, 20(15), 4322. https://doi.org/10.3390/s20154322